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We study the entanglement spectrum of highly excited eigenstates of two known models that exhibit a
many-body localization transition, namely the one-dimensional random-field Heisenberg model and
the quantum random energy model. Our results indicate that the entanglement spectrum shows a
“two-component” structure: a universal part that is associated with random matrix theory, and a
nonuniversal part that is model dependent. The nonuniversal part manifests the deviation of the highly
excited eigenstate from a true random state even in the thermalized phase where the eigenstate
thermalization hypothesis holds. The fraction of the spectrum containing the universal part decreases
as one approaches the critical point and vanishes in the localized phase in the thermodynamic limit. We use
the universal part fraction to construct an order parameter for measuring the degree of randomness of a
generic highly excited state, which is also a promising candidate for studying the many-body localization
transition. Two toy models based on Rokhsar-Kivelson type wave functions are constructed and their
entanglement spectra are shown to exhibit the same structure.
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Introduction.—Quantum entanglement, a topic of much
importance in quantum information theory, has also gained
relevance in quantum many-body physics in the past few
years [1,2]. In particular, the entanglement entropy pro-
vides a wealth of information about physical states,
including novel ways to classify states of matter that do
not have a local order parameter [3]. However, it has been
realized only recently in various physical contexts that the
entanglement entropy is not enough to fully characterize a
generic quantum state. For example, the quantum complex-
ity corresponding to the geometric structure of black holes
cannot be fully encoded just by the entanglement entropy
[4]. One natural step beyond the amount of entanglement is
the specific pattern of entanglement, i.e., the entanglement
spectrum. A recent result that motivates this direction is the
relationship between irreversibility and entanglement spec-
trum statistics in quantum circuits [5,6]. It was shown that
irreversible states display Wigner-Dyson statistics in the
level spacing of entanglement eigenvalues, while reversible
states show a deviation from Wigner-Dyson distributed
entanglement levels and can be efficiently disentangled.
Are there universal features in the entanglement spec-

trum of a generic eigenstate of a quantum Hamiltonian?
Highly excited eigenstates of a generic quantum
Hamiltonian are believed to satisfy the “eigenstate thermal-
ization hypothesis” (ETH) [7–9], which states that the
expectation value hψαjÔjψαi of a few-body observable Ô
in an energy eigenstate jψαi of the Hamiltonian with energy
Eα equals the microcanonical average at the mean energy
Eα. So one could as well ask the following question: What

is the structure of the entanglement spectrum of highly
excited eigenstates of a thermalized system? Here we find a
quandary. Completely random states are generically not
physical, namely, they cannot be the eigenstates of
Hamiltonians with local interactions. For the ETH to be
a physical scenario for thermalization, highly excited
eigenstates of physical local Hamiltonians cannot always
be completely random, yet they have to contain enough
entropy. Deviations from a completely random state can be
quantified by the entanglement entropy, more precisely by
the amount that it deviates from the maximal entropy in the
subsystem, derived by Page, which we will refer to as the
Page entropy hereafter [10]. But are there features that
cannot be captured by the entanglement entropy alone? Can
one identify remnants of randomness in the full entangle-
ment spectrum? What about in states that violate the ETH?
In this Letter, we address the above questions using as a

case study the problem of many-body localization (MBL)
[11–15]. We study two known models that were shown to
exhibit a MBL transition, namely, the Heisenberg spin
model with random fields, and the quantum random energy
model (QREM) [16–18]. In the delocalized phase, high-
energy eigenstates are thermalized according to the ETH.
The deviation from completely random states manifests
itself in a “two-component” structure in the entanglement
spectrum: a universal part that corresponds to random
matrix theory [19], and a nonuniversal part that is model
dependent. We show that the universal part fraction
decreases as one approaches the transition point and
vanishes in the localized phase in the thermodynamic limit.
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We therefore propose an order parameter that is able to
measure the degree of randomness of a generic highly
excited state and capture the many-body localization-
delocalization transition based on the entanglement spec-
trum, and show that it gives predictions consistent with
previous results. We further construct two toy models in
terms of Rokhsar-Kivelson- (RK-)type wave functions
[20,21] and the same structure in the entanglement spectra
is observed.
Heisenberg spin chain.—A well-studied model that

shows a MBL transition is the isotropic Heisenberg
spin-1=2 chain with random fields along a fixed direction

H ¼
XL

i¼1

ðhiSzi þ J~Si · ~Siþ1 þ ΓSxi Þ; ð1Þ

where the random fields hi are independent random
variables at each site, drawn from a uniform distribution
in the interval ½−h; h�. Γ is a uniform transverse field along
the x direction, which breaks total Sz conservation. We
assume periodic boundary condition and set the coupling
J ¼ 1 and Γ ¼ 0.1. In the absence of the transverse field Γ,
previous work located the critical point at h ¼ hc ≈ 3.5 in
the Sz ¼ 0 sector [13,22,23]. We consider two different
regimes by varying the disorder strength parameter h:
(i) within the thermalized phase (h < hc), and (ii) in the
localized phase (h > hc). In each regime, we focus on
eigenstates of the Hamiltonian (1) at the middle of the
spectrum, namely, on highly excited states.
We consider a bipartition of the system into subsystems

A and B of equal size (L=2 sites each). For a generic

eigenstate jψi ¼ P
σψðσÞjσi, where σ ≡ σ1σ2 � � � σL labels

the 2L possible spin configurations of the system, we cast
the wave function as ψðσÞ≡ ψðσAσBÞ, where σA ≡
σ1 � � � σL=2 and σB ≡ σL=2þ1 � � � σL. The entanglement spec-
trum is obtained from the eigenvalues of the reduced
density matrices ρA ¼ trBjψihψ j and ρB ¼ trAjψihψ j:
fpk ¼ λ2kg; k ¼ 1;…; 2L=2. In this work, we are primarily
concerned with the density of states and level statistics of
the fλkg for highly excited eigenstates for different
strengths of disorder. For each value of h analyzed, the
spectra were averaged over 10 realizations of disorder for
L ¼ 16, and 100 realizations for L ¼ 14. For each spec-
trum, the eigenstate with energy closest to zero was
obtained by a Lanczos projection [24]. This eigenstate
corresponds to a highly excited state.
Thermalized phase.—We start by considering the weakly

disordered case h ≪ hc. Only a small amount of disorder is
necessary to break the integrability of the clean
Hamiltonian. However, conservation of the total Sz also
plays a crucial role in making eigenstates completely
random. A small transverse field Γ is applied to break this
conservation without substantially altering the many-body
localization transition. In this regime, we find that the
entanglement spectrum of the highly excited state with
eigenenergy near zero is close to that of a completely
random quantum state, as shown in Fig. 1(a) for systems of
size L ¼ 16 and h ¼ 0.5. The entanglement spectrum
follows closely a Marchenko-Pastur distribution (with
proper normalization), which describes the asymptotic
average density of eigenvalues of a Wishart matrix
[25,26]. (The expression for the entanglement spectral

FIG. 1 (color online). Average entanglement spectrum of highly excited eigenstates for a system of size L ¼ 16, averaged over ten
realizations of disorder (plotted in logarithmic scale). Panels (a)–(f) show the spectrum for h ¼ 0.5; 1.5; 2; 2.5; 3, and 6, respectively. The
solid lines correspond to the spectrum of a completely random state (derived from a Marchenko-Pastur distribution), and is shown for
reference. Insets: scaling of the average entanglement entropy Sð1Þ with system size.
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density for the random state is presented in the
Supplemental Material [27]). One can also check that, in
this regime, the von Neumann entanglement entropy Sð1Þ ¼
−
P

kpk lnpk is in good agreement with the Page entropy
for random states: Sm;n ¼

P
mn
k¼nþ1ð1=kÞ − ðm − 1=2nÞ≈

lnðmÞ − ðm=2nÞ, where m and n are the Hilbert space
dimensions of subsystem A and B, respectively [10]. For
example, our computed average entropy for 16 sites is
hSð1Þi ¼ 4.9719� 0.0015, while the corresponding Page
entropy is SPage ¼ 5.0452.
As the disorder strength is increased, but still h < hc, the

system remains in the thermalized phase where it is
supposed to obey the ETH and yield volume-law scaling
of the entanglement entropy with system sizes [30], which
is verified in the insets of Figs. 1(a) to 1(e). However, in
spite of the volume-law scaling of the entanglement
entropy and the thermalization of eigenstates, the entan-
glement entropy is much lower than the Page entropy. This
indicates that the pattern of entanglement must have
changed, which is manifest in the spectra shown in
Figs. 1(b) to 1(e). The entanglement spectrum shows a
striking “two-component” structure: (i) a universal tail in
agreement with random matrix theory, and (ii) a nonuni-
versal part. The nonuniversal part dominates the weights in
the spectrum (large λk values), resulting in low entangle-
ment entropy, as it decays much faster than the universal
part. Therefore, we find that although thermalized states are
not necessarily random states, they partially retain a
component that is reminiscent of a random state: the
entanglement spectrum follows the Marchenko-Pastur level
density distribution. In addition, the universal part of the
entanglement spectrum follows a Wigner-Dyson distribu-
tion of level spacings (see the Supplemental Material [27]).
Localized phase.—In this regime, the entanglement

entropy exhibits an area-law scaling with the system size
[see the inset of Fig. 1(f)], which in one spatial dimension
implies a constant entropy and, at most, weakly logarithmic
corrections, in accordance with Ref. [31].
The entanglement spectrum in the localized regime,

depicted in Fig. 1(f) for h ¼ 6, shows a different scenario
from that in the thermalized phase: the universal part of the
spectrum disappears completely, leaving only the nonuni-
versal part characterized by its fast decay rate.
QREM.—The QREM describes L spins in a transverse

field Γ with the following Hamiltonian:

H ¼ EðfσzgÞ þ Γ
XL

i¼1

σxi ; ð2Þ

where EðfσzgÞ is the classical REM term that takes
independent values from a Gaussian distribution of zero
mean and variance L=2 [32]. This model was first studied
in the context of a mean-field spin glass, and was shown to
exhibit a first-order quantum phase transition as a function
of Γ [16]. More recently, it was further demonstrated to

have a MBL transition when viewed as a closed quantum
system [17]. Numerical and analytical arguments show that
the transition happens at an energy density jϵj ¼ Γ in the
microcanonical ensemble. Since there is no support for the
many-body localized phase at energy density ϵ ¼ 0, we
examine the eigenstates with energy density closest to
ϵ ¼ 0.5 instead, and study the entanglement spectrum as Γ
is tuned. The two-component structure and its evolution as
a function of Γ similar to Fig. 1 are again observed (see the
Supplemental Material [27]).
An order parameter.—The above picture unveils a new

aspect of the MBL transition. The two parts of the
entanglement spectrum of a highly excited state clearly
evolve as the disorder strength h is increased, namely, the
universal part shrinks and the nonuniversal part grows. This
fact suggests that one could use the fraction of each
component as an order parameter.
Figures 1(a) to 1(e) indicate an h dependent value kh that

separates the nonuniversal (k ≤ kh) from the universal
(k > kh) parts of the rank-ordered entanglement levels
(see the Supplemental Material [27] for the protocol for
determining kh). One can thus define the partial Rényi
entropies

SðqÞ≤ ¼ 1

1 − q
ln
X

k≤kh

pq
k ð3Þ

with q ≥ 0. Because the universal part of the spectrum is
where the eigenvalues with low entanglement reside, this
part of the spectrum is obscured by any measure that relies
on the eigenvalues as weights. A good measure of the
fraction of the two components that does not depend on
these weights is given by the q ¼ 0 Rényi entropy, which

simply measures the ranks: Sð0Þ≤ ¼ ln kh. Therefore, an
order parameter that measures the fraction of the universal
component is

OMBL ¼ 1 −
Sð0Þ≤

Sð0Þ
¼ 1 −

log2kh
L=2

: ð4Þ

Figure 2 shows the order parameter as defined above for
the Heisenberg spin model and the QREM, respectively.
For the QREM, all curves at different system sizes cross at
Γc ≈ 0.5, in excellent agreement with Ref. [17]. We have
also looked at energy density ϵ ¼ 0.3, and the curves cross
at Γc ≈ 0.25, giving the same numerical prediction as in
Refs. [17] and [18] (plot shown in the Supplemental
Material [27]). For the random-field Heisenberg model,
however, the fact that the transition happens at the point
where the order parameter is nearly zero makes it harder to
accurately locate the critical point using our order param-
eter. We see from Fig. 2 that the curves cross at hc ≈ 3.3,
which is also consistent with previous studies. This
indicates that, by considering the full entanglement
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spectrum at high energies, our order parameter reveals a
novel property that is promising for studying the MBL
transition.
We remark that, although the MBL transition can also be

captured by the scaling property of the entanglement
entropy, our order parameter seems to be applicable even
for models with nonlocal interactions, which could obscure
the connection between the volume-to-area law transition
of the entropy and the MBL transition.
Toy models.—We construct two RK-type model wave

functions that are shown to have (i) the two-component
structure in their entanglement spectra, and (ii) a phase
transition as a function of the tuning parameter. The wave
functions take the following form:

jΨi ¼ 1ffiffiffiffi
Z

p
X

σ

sσe−ðβ=2ÞEðσÞjσi; ð5Þ

where EðσÞ is the energy for the classical configuration σ
and Z is the corresponding partition function of the
classical statistical system [21]. sσ is a random sign for
each configuration, such that the wave function represents a

highly excited state. We consider the following two cases:
(i) EðσÞ ¼ EREMðσÞ, and (ii) EðσÞ ¼ −ðJ=LÞPi<jσ

z
iσ

z
j. In

the first case, the energy is taken to be that of the REM,
while in the second case the energy is that of an infinite-
range uniform ferromagnetic interaction.
In the small β regime, the above RK-type wave functions

are close to completely random states; upon increasing β,
the wave functions are pushed towards product states and
start to deviate from completely random states. Therefore,
the tuning parameter β here plays the role of the “disorder
strength.” Indeed, we find the same two-component struc-
ture in the entanglement spectrum (see the Supplemental
Material [27]), and the order parameter is shown in Fig. 3.
The REM case was recently studied by Chen et al. where
the MBL transition was obtained numerically using other
measures [33]. Here, we clearly see that, in both cases, the
curves cross at some critical β, indicating the existence of a
similar phase transition.
Summary and discussion.—The details of the structure of

the entanglement spectrum, especially the universal part at
the tails of the spectrum, have long been overlooked. The
main focus has been primarily on the dominating

FIG. 2 (color online). The order parameter defined as the
fraction of the universal component in the full entanglement
spectrum for the Heisenberg spin model (upper panel) and the
QREM (lower panel).

FIG. 3 (color online). The order parameter for the random-sign
RK-type wave functions. Upper panel: EðσÞ ¼ EREMðσÞ. Lower
panel: EðσÞ ¼ −ðJ=LÞPi<jσ

z
iσ

z
j with J ¼ 1.
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nonuniversal component, and the universal tail has thus far
been discarded. For example, in the density matrix renorm-
alization group [34] and tensor network methods [35], the
density matrix is truncated to avoid uncontrolled growth of
its dimensions. While this procedure is certainly justified
when the purpose is to obtain ground state properties, it
discards important information about the behavior of the
system at higher energy states. In this Letter we showed that
the full entanglement spectrum, directly computable from
the wave function, provides information that is often
invisible in the entanglement entropy alone.
On the other hand, much has been known about random

quantum states, e.g., the Page entropy and volume-law
scaling entropy. Nevertheless, the Page entropy is often an
overestimate of the actual entanglement entropy computed
from generic quantum states. Therefore, a natural question
that arises is as follows: How random does a given quantum
state look? In this Letter, we show that a generic quantum
state that satisfies the ETH does not necessarily mean a
completely random state. We present an order parameter to
quantify the degree of randomness by using information
about the full entanglement spectrum. In the context of
MBL, our order parameter is able to locate the critical
point, consistent with previous results. Our work may
provide a novel way of studying MBL, and may shed
new light on the understanding of many-body systems at
the level of wave functions.
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