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We show numerically that the “deconfined” quantum critical point between the Néel antiferromagnet
and the columnar valence-bond solid, for a square lattice of spin 1=2, has an emergent SO(5) symmetry.
This symmetry allows the Néel vector and the valence-bond solid order parameter to be rotated into each
other. It is a remarkable (2þ 1)-dimensional analogue of the SOð4Þ ¼ ½SUð2Þ × SUð2Þ�=Z2 symmetry that
appears in the scaling limit for the spin-1=2 Heisenberg chain. The emergent SO(5) symmetry is strong
evidence that the phase transition in the (2þ 1)-dimensional system is truly continuous, despite the
violations of finite-size scaling observed previously in this problem. It also implies surprising relations
between correlation functions at the transition. The symmetry enhancement is expected to apply generally
to the critical two-component Abelian Higgs model (noncompact CP1 model). The result indicates that in
three dimensions there is an SO(5)-symmetric conformal field theory that has no relevant singlet operators,
so is radically different from conventional Wilson-Fisher-type conformal field theories.
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Many condensed matter systems show higher symmetry
in the infrared than they do in the ultraviolet. The liquid-gas
critical point is a classical example: although there is
no microscopic Z2 symmetry exchanging liquidlike and
gaslike configurations, the fixed point has an emergent
Z2 symmetry and is simply the Ising fixed point.
Microscopically, this fixed point is perturbed by operators
that break the Z2 symmetry, but it nevertheless governs the
critical behavior because these perturbations are irrelevant
under the renormalization group.
To reach this critical point two variables, say temperature

and pressure, must be tuned. The spin-1=2 Heisenberg
chain provides an example of emergent symmetry without
such fine-tuning in a quantum setting. The ground state of
this model is well known to be critical. Its microscopic
symmetries are SU(2) spin rotations, together with spatial
symmetries. However the scaling limit of the spin-1=2
chain is the SUð2Þ1 Wess-Zumino-Witten conformal field
theory [1], and this has an SOð4Þ ¼ ½SUð2Þ × SUð2Þ�=Z2

symmetry that is much larger than the global symmetry
present microscopically.
Physically, this arises as follows [2]. The Néel vector ~N

has three components. There is also a spin-Peierls param-
eter φ that distinguishes between the two different patterns
of dimer (singlet) order and which changes sign under
appropriate reflections or translations. We may form the
four-component superspin ~Φ ¼ ð ~N;φÞ, and the emergent
SO(4) corresponds to rotations of this vector. Although
the dimer and Néel order parameters are utterly inequiva-
lent microscopically, a symmetry between them arises
in the infrared. Technically, this again relies on the

SO(4)-breaking perturbations of the conformal field theory

(CFT) being irrelevant or marginally irrelevant.
Naively, one might expect this phenomenon to be special

to one spatial dimension, where the enlarged symmetry is
related to special properties of 2D conformal invariance
(the doubling of conserved currents [1]). We show here
however that an analogous symmetry enhancement occurs
for the spin-1=2 magnet on the square lattice, at the
celebrated “deconfined" quantum critical point [3–5].
This is a transition between the antiferromagnetically
ordered Néel state and a columnar valence-bond solid
(VBS), and is reached by tuning a single parameter. For
example, the nearest-neighbor Heisenberg model can be
driven into the VBS using either a four-spin interaction [6]
or a next-nearest-neighbor exchange [7,8]. The emergent
symmetry we put forward is an SO(5) symmetry that mixes
the components of the Néel vector ~N, which has three
components, and the VBS order parameter ~φ, which has
two. We test it by examining the joint probability distri-
bution for these quantities.
Numerically, the critical behavior can be studied effi-

ciently with a 3D classical loop model [9], and we use this
approach here. The order of the transition has been
controversial as a result of violations of conventional
finite-size scaling [10–16], which we discussed in detail
previously [9]. We will return to this below, arguing that the
present results support the continuity of the transition.
The Néel-VBS transition is usually described with the

noncompact CP1 (NCCP1) Lagrangian [4,17]

L ¼ jð∇ − iAÞzj2 þ κð∇ × AÞ2 þ μjzj2 þ λjzj4: ð1Þ
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The two-component bosonic spinon field z ¼ ðz1; z2Þ is
related to the Néel vector ~N by ~N ¼ z†~σz. The U(1) gauge
field Aμ is related by duality to the VBS order parameter
~φ ¼ ðφx;φyÞ, which distinguishes the different columnar
singlet patterns [4,18]. Although we will use the language
of the Néel-VBS transition, our conclusions apply more
generally to the above field theory, indicating that it flows
to an SO(5)-symmetric fixed point at the critical value of μ.
In the language of this 3D gauge theory, the VBS order
parameter is the operator M ¼ φx þ iφy that inserts a
Dirac monopole in Aμ [4,19,20].
SO(5) symmetry cannot be made explicit in the formu-

lation of Eq. (1). Fortunately, Senthil and Fisher [21],
building on the work of Tanaka and Hu [22], have argued
that an alternative field theory describes the Néel-VBS
transition and is equivalent to Eq. (1). This is a nonlinear σ
model (NLσM) for the five-component superspin

~Φ ¼ ðNx; Ny; Nz;φx;φyÞ; ð2Þ

augmented with (i) anisotropies that break the global
symmetry from SO(5) down to the spin rotation and spatial
symmetries present microscopically, and (ii) a topological
Wess-Zumino-Witten term at level 1 [23,24], which is
analogous to that in the CFT for the spin chain. The leading
anisotropy plays the role of the mass term in Eq. (1): it
drives the transition between the Néel and VBS ordered
phases.
The NLσM formulation makes the emergent symmetry a

more natural possibility, since it could arise at the critical
point if all the higher anisotropies happen to be renorm-
alization-group irrelevant [22,25]. We will discuss below
the phase diagram for the NLσM (with the WZW term) that
is implied by this conjecture. Because there is at present
no perturbatively accessible description of the transition
that would permit an analytical calculation of scaling
dimensions, we approach the problem using large-scale
simulations.
In previous work we characterized various observables

at the deconfined transition in detail, using a three-
dimensional loop representation to reach system sizes up
to L ¼ 512. See Ref. [9] for details of the model, which is
in the Néel phase for coupling J < Jc and the VBS phase
for J > Jc, with Jc ¼ 0.088501ð3Þ. We found a remarkable
similarity between the critical Néel and VBS correlation
functions. The anomalous dimensions determined from the
correlators at separations r ≪ L are ηNéel ¼ 0.259ð6Þ and
ηVBS ¼ 0.25ð3Þ [26]; the two correlators also behave
similarly in the regime r ∼ L, despite the scaling violations
discussed in Ref. [9]. This suggests searching for an
emergent SO(5) symmetry that would explain these ap-
parent coincidences.
Probability distribution.—Consider the joint distribution

for the Néel and VBS order parameters in a system of linear
size L. If SO(5) symmetry emerges, then this will be a

function only of ~Φ2 ¼ ~N2 þ ~φ2 at the critical point (after a
trivial rescaling of ~φ). Spin rotation symmetry of course

already guarantees that the distribution depends on ~N only

via ~N2. Also, while microscopic spatial symmetry only
allows ~φ to be rotated by multiples of π=2, it is well
established numerically that symmetry under continuous
U(1) rotations of ~φ emerges near the transition [6,27,29].
This was checked for the present model in Ref. [9] (see also
Supplemental Material [30], and see Ref. [33] for related
phenomena). The crucial point is therefore whether the
distribution is invariant under U(1) rotations that mix a

component of ~φ with a component of ~N.
Let the standard deviations of Nx and φx be denoted σN

and σφ, respectively, and use a tilde to denote quantities
rescaled to have unit variance: ~Nx ¼ Nx=σN and

FIG. 1 (color online). The joint probability distribution
Pð ~Nx; ~φxÞ, after rescaling Nx and φx to have unit variance, in
a critical system of size L ¼ 100. The upper plane shows the
contour plot.

FIG. 2 (color online). Main panel: variance ratio σφ=σN plotted
against J for various L. Curves cross at Jc as expected from
SO(5) symmetry. Inset: same quantity as a function of L for
several J around Jc ≃ 0.0885 (key in Fig. 3).
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~φx ¼ φx=σφ. Figure 1 shows the joint probability distribu-
tion for these quantities at the critical point J ¼ Jc in a
system of size L ¼ 100. The visual evidence for emergent
symmetry between Néel and VBS orders is striking.
Before turning to a quantitative analysis of the distri-

bution, a basic test is that the variances σN and σφ of the
order parameters depend on system size in the same way at
criticality [34], i.e., that σφ=σN is L-independent at Jc. In
Fig. 2 this is confirmed to high precision over a wide range
of length scales. Plots of σφ=σN versus J for different L
values cross at Jc [35] (the value of σφ=σN at Jc depends on
the nonuniversal normalization of the lattice operators).
For a quantitative analysis of the probability distribution

we examine the moments

Fa
l ¼ hra cos ðlθÞi; ð3Þ

where ð ~Nx; ~φxÞ ¼ rðcos θ; sin θÞ. Emergent symmetry
requires these to vanish for l > 0. We have computed
F4
2 and F4

4 for large sizes:

F4
2 ¼ h ~N4

x − ~φ4
xi; F4

4 ¼ h ~N4
x − 6 ~N2

x ~φ
2
x þ ~φ4

xi: ð4Þ

Figure 3 shows F4
2 as a function of L at and close to the

critical point; the Supplemental Material contains F4
4 [30].

For J ¼ Jc, both moments are consistent with zero over the
entire L range. The expected values [30] in the adjacent
phases [including the regime of weak VBS order, which has
an effective U(1) symmetry for rotations of ~φ] are also
indicated in the figure.
The inset to Fig. 3 shows F4

2 as a function of J: note the
very clearly defined crossing at J ¼ Jc, F4

2 ¼ 0. Further
moments are shown for L ¼ 100 in Table I [30]. It should
be noted that the critical distribution is markedly non-
Gaussian, with nonvanishing higher cumulants, e.g.,
½hN4

xi − 3hN2
xi2�=hN2

xi2 ¼ −0.7549ð13Þ for L ¼ 100.

Equalities between scaling dimensions.—In addition to
the equivalence between Néel and VBS vectors (manifested
in the joint distribution and anomalous dimensions), SO(5)
has consequences for operators transforming in higher
representations. Take the leading operators in the symmet-
ric two- and four-index representations:

Oð2Þ
ab ¼ ΦaΦb −

1

5
δabΦ2; Oð4Þ

abcd¼ ΦaΦbΦcΦd − Cabcd:

The subtractions [36] ensure irreducibility. Oð2Þ is relevant,
with scaling dimension x2 < 3. In fact, a component of
Oð2Þ is the operatorOJ that drives us through the Néel-VBS
transition as we vary J, by favoring one or the other order
[OJ therefore plays the role of the mass term in Eq. (1)]:

OJ ¼
5

2

X3
a¼1

Oð2Þ
aa ¼ ~N2 −

3

2
~φ2: ð5Þ

Remarkably, various a priori unrelated operators share the
same scaling dimension x2 since they are also components
of Oð2Þ. These include the spin-quadrupole moments
NaNb − δab ~N

2=3, and the relevant [29] operators φaφb −
δab ~φ2=2 that in NCCP1 language insert “strength-2”
monopoles [37]. The same scaling dimension controls
φaNb, though microscopically this is maximally dissimilar
from OJ, as φaNb transforms under spin and spatial
symmetries while OJ is invariant under them.
To test these predictions, Fig. 4 shows the two-point

functions of OJ, φxNz, and φxφy, or rather lattice versions
[30] of these operators. (See Ref. [9] for a general
discussion of critical correlators.) Note the striking sim-
ilarity of the three curves, as expected from SO(5)
symmetry. The slopes at r ∼ 10 are around xeff2 ∼ 1.5.
This effective exponent could be strongly affected by finite
size effects, but it agrees well with a recent estimate of
the two-monopole scaling dimension in Ref. [38]. [The
two-monopole [39] and other dimensions are known at

FIG. 3 (color online). Main panel: F4
2 [Eq. (4)] versus L for a

few J values close to Jc ≃ 0.0885. Dashed lines: values in the
Néel phase, at the SO(5)-symmetric critical point, and in the U(1)
and Z4-symmetric regimes of the VBS phase. Inset: J depend-
ence of F4

2 for various L (key in Fig. 2).

FIG. 4 (color online). Correlators GOðrÞ for operators φxNz,
φxφy, and OJ in a system of size L ¼ 100. (The GO have been
normalized to agree at r ¼ 10.) Inset: GOJ

for various L.
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large n in the SUðnÞ generalization of Eq. (1) [40–43], and
show that a symmetry between Néel and VBS order
parameters cannot persist in this limit.]
Oð4Þ allows us to write both a subleading operator that

breaks the symmetry between Néel and VBS

(
P

3
a¼1

P
5
b¼4 O

ð4Þ
aabb), and one that breaks the remaining

symmetry for ~φ down to fourfold rotations (
P

5
a¼4O

ð4Þ
aaaa).

Therefore, the same irrelevant exponent may control finite-
size corrections to both types of symmetry enhancement
[30]. Note that all the anisotropies that are allowed by
microscopic symmetry in the bare action (with the excep-
tion of OJ) must be irrelevant, as otherwise SO(5) sym-
metry could not emerge at criticality.
Nonlinear σ model.—The NLσM proposed for the

deconfined critical point in Ref. [21] (see also Ref. [22]) is

Sσ ¼
Z

d3x

�
1

g
ð∇~ΦÞ2 þ

X
i

λiOi

�
þ SWZW; ð6Þ

where SWZW is a topological Wess-Zumino-Witten term at
level 1 [associated with the homotopy group π4ðS4Þ ¼ Z of
the target space]. Physically, this term ensures that a vortex
in the VBS has an unpaired spin 1=2 at its core [18,21]. The
Oi are the various anisotropies, some discussed above, that
break SO(5) symmetry down to the microscopic physical
symmetry.
Suppose that the Néel-VBS transition is continuous, with

emergent SO(5) symmetry, and is described by the NLσM
with the WZW term. Since the critical point is reached by
tuning a single parameter, there is only one RG-relevant
coupling in Eq. (6), namely, the anistotropy OJ of Eq. (5).
The present results therefore show that the SO(5)-
symmetric NLσM, without anisotropies, has a nontrivial
infrared stable fixed point controlling a power-law corre-
lated phase (Fig. 5). This fixed point also governs the
deconfined transition. (The NLσM with the WZW term
also has a stable ordered phase.)
The absence of a trivial disordered phase in Fig. 5 is

counterintuitive, but one may argue that such an absence is
inevitable in any field theory that describes the lattice
magnet [21,44], essentially because of the higher-
dimensional Lieb-Schultz-Mattis theorem [45–47].
The emergent SO(5) symmetry therefore suggests the

existence of a 3D SO(5)-symmetric CFT that is radically
unlike standard Wilson-Fisher CFTs, in that there are no

relevant singlet operators. It would be very interesting to
investigate this using the conformal bootstrap [48], making
use of numerical estimates for operator dimensions [9].
This should be simpler [49] than studying the critical
NCCP1 model without assuming SO(5) symmetry.
Scaling violations.—The deconfined critical point shows

strong violations of conventional finite-size scaling. We
argued in Ref. [9] that these are not simply large scaling
corrections of the conventional type (i.e., from irrelevant or
marginally irrelevant operators)—but should instead be
attributed either to an anomalously weak first order
transition or to a genuine critical point with unconventional
finite-size scaling due to a dangerously irrelevant variable.
The present results strongly support the second scenario (a
genuine continuous transition). This is because a critical
point is the only natural explanation for emergent SO(5)
symmetry, which we have tested here to high precision.
This symmetry therefore provides long-sought direct evi-
dence for the continuity of the transition.
In more detail, if one attempts to account for the data in

terms of an anomalously weak first order transition (i.e.,
without postulating a genuine 3D critical point), one is led
to a scenario where the apparent criticality is due to a
nearby fixed point at a spacetime dimension slightly below
3 [9]. Although this scenario can potentially explain
pseudocritical behavior up to an extremely large length
scale, it cannot naturally account for the emergent SO(5)
symmetry, which makes sense only for a 3D fixed point.
While we can consider the NCCP1 model in an arbitrary
dimension, the operator ~φ—interpreted, for example, as a
monopole insertion operator—is special to 3D, and is
required for construction of the SO(5) superspin.
Assuming therefore that the transition is continuous, a

possible explanation for the scaling violations is that a
dangerously irrelevant variable is required to cut off the
fluctuations of a zero mode of the field [9]. (This is
analogous to ϕ4 theory above four dimensions, where
the quartic term is irrelevant, but nevertheless necessary to
prevent divergent fluctuations of ϕ’s zero mode [50].) This
may suggest that an alternative field theory description
exists that is more natural than the NLσM [51].
Future directions.—It would be interesting to investigate

consequences of the emergent symmetry for finite temper-
ature behavior, as well as to look for signs of it using
methods complementary to Monte Carlo calculations such
as exact diagonalization or density matrix renormalization
group. Our results also motivate further analysis of SO(5)-
symmetric 3D CFTs (e.g., with the conformal bootstrap)
and a general investigation of the role played by the WZW
terms in field theories above 2D. For example, is there an
analogous SO(6)-symmetric CFT in 4D? Finally, we note
that the critical behavior at the deconfined transition
remains perplexing, and deserves further investigation.
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FIG. 5 (color online). Conjectured phase diagram for the fully
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symmetry is emergent. Moving away from Jc introduces the
relevant symmetry-breaking perturbation OJ (not shown), lead-
ing to Néel or VBS order.
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[26] The possibility that ηNéel ¼ ηVBS was suggested previously

[6,8], but has also been questioned [27]. A striking sim-
ilarity between near-critical Néel and VBS correlation
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