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The rates at which energy and particle densities move to equalize arbitrarily large temperature and
chemical potential differences in an isolated quantum system have an emergent thermodynamical
description whenever the energy or particle current commutes with the Hamiltonian. Concrete examples
include the energy current in the 1D spinless fermion model with nearest-neighbor interactions (XXZ spin
chain), the energy current in Lorentz-invariant theories or the particle current in interacting Bose gases in
arbitrary dimension. Even far from equilibrium, these rates are controlled by state functions, which we call
“expansion potentials,” expressed as integrals of equilibrium Drude weights. This relation between
nonequilibrium quantities and linear response implies nonequilibrium Maxwell relations for the Drude
weights. We verify our results via density-matrix renormalization group calculations for the XXZ chain.
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The dynamics of how a system of interacting particles
expands from an initial state with spatial variation of
temperature, density, or both is one of the basic problems
in nonequilibrium statistical physics. The study of quantum
effects on this process was reinvigorated by the exper-
imental creation of ultracold atomic gases [1,2], including
cases where the atoms are confined to one or two spatial
dimensions. Originally the main quantity measured was the
momentum distribution [3,4], but recent progress on the
“quantum gas microscope” and related techniques has
made it possible to image particle density with high
resolution, e.g., on single sites of an optical lattice [5–7].
Such imaging methods mean that important observables

to characterize expansion of an atomic gas in either free
space or an optical lattice [8] are not the same as those for
nonequilibrium processes in electronic transport. For elec-
trons, the charge or energy current between two leads has
been studied in hundreds of situations, including a few
nonequilibrium results with interactions such as tunneling
between Luttinger liquids [9,10], the interacting resonant
level model [11–14], and the single impurity Anderson
model (for a recent review see [15]). The point of the
present work is to show that one natural quantity of interest
for atomic expansion measurements [16–21], namely the
change in time of the first moment of particle or energy
density, has a precise nonequilibrium thermodynamic
description in a broad class of systems. For a continuum
system with either Lorentz or Galilean invariance, this
description reduces to standard thermodynamic state func-
tions, but we find that even lattice systems relevant to
current experiments have a description in terms of an
“expansion potential” that is distinct from conventional
thermodynamic quantities.
We use this description to compute the energy expansion

rate exactly in the anisotropic Heisenberg spin chain

(XXZ model) and compare our results in detail against
time-dependent density-matrix renormalization group
(DMRG [22–24]) calculations using the finite temperature
algorithm explained in Ref. [25]. The same formalism is
applicable to higher-dimensional systems with emergent
Lorentz or Galilean invariance. Our predictions apply in
particular to a one-dimensional Bose gas (Lieb-Liniger
model [26,27], or its lattice regularization in terms of
q-deformed bosons [28]), expanding into vacuum, a prob-
lem that has attracted a lot of attention recently [8,29–40].
Our results show that, at least for some quantities, exact
results can be obtained for far-from-equilibrium expansion
even in lattice models at arbitrary coupling strength.
At t ¼ 0, we prepare two semi-infinite regions x < 0

and x > 0 at equilibrium with chemical potentials and
temperatures ðμL; TLÞ and ðμR; TRÞ [Fig. 1(a)]. (The initial
state on the boundary between the two leads, or a possible
finite extent of the boundary region, will not matter for
the quantities of interest here after some initial transient.)
We write one-dimensional equations for simplicity but the
concept is general. We quantify the expansion for t > 0 by
the time dependence of the first moment of particle density,
or similarly for energy,

M1ðtÞ ¼
Z

Λ

−Λ
nðx; tÞxdx; ð1Þ

with Λ a large observation scale: Λ ≫ vt with v a typical
velocity. From now on we suppress the arguments of n
andM1. The continuity equation relates density and current
∂tnþ ∂xj ¼ 0. Now dM1

dt ¼ −
R
Λ
−Λ x∂xjdx ¼ J , with

J ¼ R
Λ
−Λ jdx where in the integration by parts we have

assumed jðxÞ ≈ 0 at x ¼ �Λ [Fig. 1(b)].
The key ingredient for the existence of an expansion

potential is the conservation of the integrated current:
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�I
jdx;H

�
¼ 0; ð2Þ

which is true for many problems of interest with periodic
boundary conditions. Note that this is a stronger statement
than what is sometimes meant by a “conserved current,”
which is anything related to a conserved charge by a
continuity equation. A simple example with such a con-
servation law is a Bose gas in d spatial dimensions with
say, δ-function interactions H ¼ R

ddxΨ†ð− ∇2

2mÞΨþ
cΨ†Ψ†ΨΨ, with ½Ψ†ðxÞ;ΨðyÞ� ¼ δðx − yÞ, where the total
particle current J Q ¼ −i

R
dxðΨ†∇Ψ −∇Ψ†ΨÞ is con-

served. More generally, a system with one species of
particles moving in the continuum in any spatial dimension
will satisfy Eq. (2) for the particle current if the particle
current is proportional to the total momentum and the
momentum is conserved by the interactions. A less trivial
example of Eq. (2) is the energy current in the spinless
fermion model or XXZ spin chain (we will use the
former representation): the energy current operator J E ¼
i
P

j½hj; hjþ1� commutes with the XXZ Hamiltonian
HXXZ ¼ P

ihi with

hi¼−
J
2
ðc†iþ1ciþH:c:ÞþJΔ

�
ni−

1

2

��
niþ1−

1

2

�
; ð3Þ

with ni ¼ c†i ci, implying purely ballistic energy transport
[41,49]. An example of a current not conserved in this
sense is the charge current in the XXZmodel; while there is
a degree of ballistic transport in this model in the gapless
regime even at nonzero temperature [50–52], the commu-
tator in Eq. (2) is nonzero. Steady-state energy currents

between reservoirs have been actively studied [53–59]
but exact results have been difficult to obtain except in
the low-temperature conformal limit or for noninteracting
systems.
Expansion potentials.—The global current conservation

law [Eq. (2)] implies that the current density should
itself satisfy a continuity equation for some “current of
current” P,

∂tjþ ∂xP ¼ 0; ð4Þ
and we will see in the following that the operator P is
related to pressure for systems with emergent Galilean or
Lorentz invariance. Now spatially integrate this second
continuity Eq. (4) over the region ½−Λ;Λ� centered on the
boundary between our two large reservoirs L and R. Then

d2M1

dt2
¼ −P�Λ−Λ ¼ ΔG ¼ GL − GR; ð5Þ

where we have introduced the expansion potential
Gðμ; TÞ ¼ hPiμ;T for the thermodynamic expectation of
the operator P.
This is a strong constraint on the integrated current

J ¼ R
Λ
−Λ jdx. We perform DMRG calculations on a XXZ

spin chain with open boundary conditions that effectively
describes a region of an infinite system. Within that region
[shown in Fig. 1(b)], the total energy current is clearly not
conserved [41] and grows linearly with time (Fig. 2) for
times short enough that the reservoirs are effectively
infinite, so their initial values can be used in the boundary
evaluation on the right-hand side of Eq. (5). If the current
has both diffusive and ballistic components (like the charge
current in the XXZ chain), diffusive contributions die out
after a transient and the spatially integrated current also
grows linearly. However, the situation becomes especially
simple for a current satisfying Eq. (2), the key being that the
right-hand side of Eq. (5) contains only the operator P
evaluated at equilibrium, since deep within the reservoirs
the system remains arbitrarily close to equilibrium in this
intermediate time regime. This result relies only on Eq. (2)
and does not depend on whether the system is gapped or
gapless, for instance.
Linear response.—One more relation is all that is needed

to compute the expansion potential in some important
cases. This is because Eq. (5) implies that linear response is
enough to predict nonequilibrium, since linear response
gives the derivative of G, and knowing its derivative
determines the function up to an arbitrary additive constant.
Focusing for the moment on energy current and a purely
thermal gradient, linear response then predicts jE ¼
−σE∇T with the thermal conductivity characterized by
a thermal Drude weight σEðωÞ ¼ πDthðTÞδðωÞ with
Dth ¼ β2hJ 2

Ei=L, where L is the size of the system. The
spatially integrated current between the two reservoirs R
and L then reads

R
Λ
−Λ jEdx ¼ πΔTδðω ¼ 0ÞDthðTÞ where

(a)

(b) (c)

FIG. 1 (color online). (a) Nonequilibrium expansion setup
considered in this Letter. (b) Energy point current jEðx; tÞ in the
XXZ spin chain (see Fig. 2 for parameters). (c) The variation
of the expansion potential G does not depend on the path in the
ðβ; μÞ space. This implies nonequilibrium Maxwell relations
(see text).
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the time t can be thought of as an infrared cutoff that
regularizes δðω ¼ 0Þ ≈ R

t
−t

dt
2π ¼ t=π. We thus find

d2Mth
1

dt2
¼ 1

t
hJ Eit ¼ DthðTÞ × ðΔTÞ; ð6Þ

withJ E ¼ R
Λ
−Λ jEdx and h� � �it refers to the nonequilibrium

expectation value after time t. For the charge current at
constant temperature TR ¼ TL ¼ T, we similarly find
d2Mc

1

dt2 ¼ hJ Qit=t ¼ DcΔμ with the charge Drude weight
Dc ¼ βhJ 2

Qi=L (if ½H;J Q� ¼ 0), for a small chemical
potential gradient Δμ. These results are easily extended to
the case where both temperature and chemical potential
gradients are present (see below). We also note that these
linear response results remain valid even if the currents are
not fully conserved and contain diffusive parts, like the
charge current in the XXZ spin chain, which provides a
direct way to measure Drude weights via imaging in cold
atom experiments (see also Ref. [60]). We checked this
relation between the charge (resp., thermal) Drude weight
and linear-response rate of the spreading of charge (resp.,
energy) in the XXZ chain (see Fig. 3)—similar relations
also exist for diffusive systems [61].
Nonequilibrium expansion potentials.—The thermody-

namic description, Eq. (5), together with the linear response
prediction implies that the spreading of particles and energy
far from equilibrium are fully characterized by the equi-
librium Drude weights. As an example, let us consider the
rate of energy spread in the XXZ spin chain between two

reservoirs at different temperatures TR and TL and μ ¼ 0.
Then even far from equilibrium

dMth
1

dt
∼

t→∞
t ×

Z
TL

TR

DthðTÞdT: ð7Þ

In other words, the nonequilibrium rate of the energy
spread is given by the variation ΔR→LGE ¼ GEðTLÞ −
GEðTRÞ of a state function GEðTÞ with ∂TGE ¼ DthðTÞ.
This can be checked numerically by comparing the rate of
expansion to the thermal Drude weight of the XXZ model
computed by Klümper and Sakai [62] (see Fig. 4).
This is easily generalized to the case of reservoirs R and

L with both different temperatures (TR and TL) and
chemical potentials (μR and μL). If the energy current is
conserved, Eq. (5) implies that the far-from-equilibrium
rate of energy spread is given by the variation of an
expansion potential GEðμ; β ¼ T−1Þ

d2Mth
1

dt2
¼ ΔR→LGE ¼

Z
R→L

dGE; ð8Þ

where the differential dGE is exact so that the integral does
not depend on the chosen path. The state function GE is
then fully determined by the equilibrium Drude weights
associated with the conservation of the energy current.
Linear response theory [63] then yields

dGE ¼ β
hJ QJ Ei

L
dμ −

�hJ 2
Ei
L

− μ
hJ QJ Ei

L

�
dβ: ð9Þ

Even if J Q is not conserved, the Drude thermopower is a
thermodynamic quantity determined by hJ QJ Ei provided
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FIG. 2 (color online). Spatially integrated charge and energy
currents in the XXZ model with open boundary conditions as a
function of time for one choice of parameters TL, μL, TR, μR at
Δ ¼ 0.5 under two protocols, A and B, that differ only in the way
the central bond is dealt with in the initial state [41]. The currents
J ¼ R

Λ
−Λ jdx are locally integrated around the cut site. The

chemical potentials μL;R prepare the state but are not included in
the real-time evolution (i.e., they are chemical potentials rather
than electric potentials). Inset: energy density profile as a function
of time. The spatially integrated energy current is equal to
dMth

1 =dt where Mth
1 is the first moment of energy density.
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FIG. 3 (color online). Comparison between charge Drude
weight (long-time asymptote of hJ QðtÞJ Qð0Þi=LTÞ and
rate of particle spreading d2Mc

1=dt
2 ¼ hJ QðtÞit=t for a

small chemical potential difference (Δμ ∼ 10−3 ≪ J ¼ 1) in
the XXZ chain (protocol A). Inset: similar relation for energy
transport between thermal Drude weight and rate of energy
spreading d2Mth

1 =dt
2 ¼ hJ EðtÞit=t for a small temperature

difference at half-filling [see Eq. (6)].
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that ½J E;H� ¼ 0. If the particle current is conserved,
we find similarly that the integrated nonequilibrium
particle current between two reservoirs ðμR; βRÞ and
ðμL; βLÞ is given by the variation of another state function
ðd2Mc

1=dt
2Þ ¼ ΔR→LGQ with dGQ ¼ βðhJ 2

Qi=LÞdμ−
½ðhJ QJ Ei=LÞ − μðhJ 2

Qi=LÞ�dβ.
Nonequilibrium Maxwell relations.—We saw above that

when either the energy or particle current is fully con-
served, then even far from equilibrium the expansion
dynamics of energy or particle densities are characterized
by state functions that are entirely determined by equilib-
rium Drude weights. An interesting corollary of the path
independence of these state functions [Fig. 1(c)] is non-
equilibrium Maxwell relations for the Drude weights. For
example, if the energy current is conserved, ∂μ∂βGE ¼
∂β∂μGE yields

ðβ∂β − μ∂μÞhJ QJ Ei þ ∂μhJ 2
Ei ¼ 0; ð10Þ

which can also be rewritten as hΔHJ QJ Ei ¼ hΔNJ 2
Ei

with ΔH ¼ H − hHi and ΔN ¼ N − hNi. This equality
was known in the context of the XXZ chain [64] and was
actually used to compute the Drude thermopower analyti-
cally [65], but our approach provides a very transparent
derivation of why such a relation has to hold (see Fig. 4
for a numerical check). If the charge current is conserved,
then the associated nonequilibrium Maxwell relation reads
ðβ∂β − μ∂μÞhJ 2

Qi þ ∂μhJ EJ Qi ¼ 0, which can also be
rewritten as hΔHJ 2

Qi ¼ hΔNJ QJ Ei.

Examples in d > 1 dimensions.—Even though most of
the arguments discussed above focused on one dimension
for simplicity, the general concepts apply in a higher
dimension as well. For a system with emergent Lorentz
symmetry (z ¼ 1 critical points for instance), the symmetry
of the stress-energy tensor means that the energy current
T0i with i ¼ 1;…; d is also the (conserved) momentum
density Ti0. The energy expansion potential then reads
GEðβÞ ¼ −

R
β dβ

R
ddxð1=dÞPihT0iðxÞT0ið0Þi, which can

be related to pressure [57,59]. In a nonrelativistic system
with a single species of particles and current proportional to
(conserved) momentum, there is a particle expansion
potential; the interacting Bose gas is one such example.
The particle Drude weight Dc is then entirely determined
by the sum rule

R ðdω=πÞσðωÞ ¼ Dc ¼ ðn=mÞ with n the
density and m the mass [63]. This immediately implies
that the expansion potential is simply related to pressure
GQ ¼ −ðΩ=VmÞ ¼ ðP=mÞ with Ω the thermodynamic
grand potential and V the volume—this is a consequence
of Galilean invariance [66]. The Drude thermopower is then
given by hJ QJ Ei=V ¼ ðT=mÞðuþ PÞ with u the internal
energy density. These quantities can be computed explicitly
for the Lieb-Liniger gas in one dimension as a function of T
and μ (or particle density) [69]. This and other simple cases
where the expansion potentials can be computed explicitly,
such as noninteracting systems and Luttinger liquids, are
given in the Supplemental Material [41].
Nature of the steady state.—Interestingly, the variation

of expansion potential ΔG provides a lower bound for the
point current jðxÞ [57]. However, the more general relation
between spatially integrated and point currents remains
mysterious. We find numerically that both the energy
density nEðx; tÞ and the energy current jEðx; tÞ in the
XXZ spin chain at half-filling become functions of x=t at
large enough times, with nontrivial limiting shapes [41].
In the low-temperature limit described by conformal field
theory [54,56], we expect a uniform steady-state local
current jEðxÞ ¼ ðΔG=2vÞ ¼ ðπ=12ÞðT2

L − T2
RÞ over a

region of size 2vt with v the spinon velocity. However,
we find that the rescaled functions jEðx=tÞ, nEðx=tÞ even at
moderate temperatures are very far from that picture: in
general, there is no nonzero range of the reduced variable
x=t for which jEðx=tÞ is constant, indicating that the
steady-state region spreads sub-ballistically, and there
are no transient “shock waves” like those expected in
the presence of Lorentz invariance [59,70] separating the
uniform steady-state region from the reservoirs. It is an
interesting problem for future work to determine more
properties of the limiting function jEðx=tÞ, possibly by
adapting the recently developed hydrodynamic approaches
for relativistic systems [59,70] to incorporate the additional
conserved quantities of integrable lattice spin chains.
Discussion.—In closing, we emphasize that the expansion

potentials generalize familiar concepts in the presence of
either Galilean or Lorentz invariance to considerably more
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FIG. 4 (color online). The thermodynamic description, Eq. (5),
implies that the spatially integrated current J 1→2 between two
reservoirs 1 and 2 should be equal to J 1→3 þ J 3→2 for any
intermediate reservoir 3. We verified this “cyclic invariance” of
the spatially integrated energy current hJ EðtÞit=t and point
current hjEðx ¼ 0; tÞit in the XXZ chain (protocol A). While
cyclicity for the point current may be only approximate, it is exact
for the integrated current. Insets: Numerical check of Eq. (7) and
of the nonequilibrium Maxwell relation, Eq. (10), that follows
from conservation of energy current.
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complex physical situations. Lattice models for which a
current is conserved in the sense of Eq. (2) include the XYZ
spin chain, the q-Bose gas [28], and the supersymmetric
point of the t-J model [71]. For systems where the con-
servation law does not strictly hold, such as the Bose-
Hubbard model at small occupancy where rare double
occupancies spoil the mapping to the XXZ model, Joule
heating and other strongly nonequilibrium physics could be
computed using perturbation theory from the expansion-
potential case. It would be interesting to connect the
expansion potential to other nonequilibrium effects, such
as “quantum quenches” of a coupling [72], which can reveal
topological phases [73,74]. For lattice models with con-
served energy current but without full integrability, the
expansion potential still exists and could be computed
numerically at equilibrium, while it would serve as a useful
constraint on predictions about far-from-equilibrium energy
flow [70].
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