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Current nonequilibrium Monte Carlo methods suffer from a dynamical sign problem that makes
simulating real-time dynamics for long times exponentially hard. We propose a new “inchworm algorithm,”
based on iteratively reusing information obtained in previous steps to extend the propagation to longer
times. The algorithm largely overcomes the dynamical sign problem, changing the scaling from
exponential to quadratic. We use the method to solve the Anderson impurity model in the Kondo and
mixed valence regimes, obtaining results both for quenches and for spin dynamics in the presence of an
oscillatory magnetic field.
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The nonequilibrium physics of quantum many-body
systems is a central topic of current research [1].
Experimentally, the application of strong currents through
quantum dots [2], molecular junctions [3] and extended
systems, the optical excitation of high densities of carriers
above band gaps of Mott insulators [4], and high amplitude
terahertz coupling to phonon modes [5] have revealed
exciting new physics. In cold atoms sudden parameter
quenches have also been studied [6–8]. While remarkable
experimental progress has been made, theory faces a crucial
limitation: numerical calculations of time-dependent and
nonequilibrium problems suffer from an exponential scal-
ing of computational cost with simulation time. In different
formulations the problem manifests in different ways: as a
mixing of low- and high-energy states as time progresses in
truncated wave function methods like time-dependent
numerical renormalization group (NRG) [9] or density
matrix renormalization group (DMRG) [10–12], as an
exponential number of operators needed to reach a given
accuracy in the hierarchical equations of motion [13–17],
or as a “dynamical” sign problem in nonequilibrium
quantum Monte Carlo (QMC) methods [18–21]. In prac-
tice, the exponential scaling in known numerically exact
methods has prevented accurate numerical calculations of
the long-time behavior of nonequilibrium correlated
systems.
Diagrammatic QMC methods, which provide numeri-

cally exact solutions by stochastically sampling a perturba-
tion series, have been particularly fruitful in elucidating the
physics in equilibrium, where the problem can be formu-
lated in imaginary time [22–30]. Straightforward extension
of these methods to nonequilibrium [18–21] requires
estimation of integrals that contain combinations of oscil-
lating exponentials expðiHtÞ; as the integrals extend over
longer time ranges, numerical difficulties limit the times

accessible in the strong coupling regime to the order of the
typical tunneling time scale. Longer times can be reached by
sampling corrections to semianalytic theories such as the
none- and one-crossing approximations (NCA [31,32] and
OCA [33–35]), by explicit summation over Keldysh indices
followed by a continuation on the complex plane [36], and
withmemory function techniques [37–40]. Nevertheless, all
of these methods encounter an exponential wall as time is
increased, limiting their applicability to relatively short time
dynamics or to the weak correlation regime.
In this Letter we present an algorithm whose computa-

tional cost scales quadratically rather than exponentially
with time, allowing controlled numerical access to the long-
time behavior of strongly correlated quantum systems. The
algorithm is based on iteratively reusing information from
shorter time propagation to obtain results for longer times,
is generally applicable to any diagrammatic method, and
has a straightforward interpretation in terms of self-con-
sistent skeleton expansions. The method presented here
deals only with the dynamical sign problem, not with the
intrinsic fermionic one, which limits access to certain
systems even in equilibrium. However, a spatial inchworm
algorithm (as opposed to the temporal one presented here)
might make headway against that problem. We implement
the algorithm for the Anderson impurity model (AIM) in
the strongly correlated Kondo and mixed-valence regimes,
and show that it captures the long-time spin dynamics after
a quantum quench and in the presence of an oscillating
magnetic field. While the results presented here pertain to
impurity models, the algorithm itself should prove useful
beyond this context in the more general quantum many-
body setting.
The crucial object in the algorithm is the Keldysh-

contour propagator Gαα0 ðtf; tiÞ giving the transition ampli-
tude between state α at initial contour time ti and state α0 at
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final contour time tf in the presence of a Hamiltonian
H ¼ H0ðtÞ þ VðtÞ:

Gαα0 ðtf; tiÞ≡ hαjTrB
n
e
i
R

tf
ti

d~tH0ð~tÞþVð~tÞojα0i: ð1Þ

Reference [35] discusses such propagators and their
relationship to observables. H0 is assumed to be an exactly
solvable Hamiltonian, and one studiesG by an expansion in
iV, as illustrated for an impurity model expansion (where
all propagators can be collapsed onto a single line) in Fig. 1.
Figure 1(a) represents a bare expansion, where G (thick
line) is evaluated by summing all possible interaction lines
in terms of a bare propagator (thin line). Figure 1(b)
represents a particular bold-line expansion, where an
approximate propagator (represented by a medium or
“bold” line) containing a subset of the interactions is
evaluated semianalytically, and all corrections are summed
in terms of the bold propagator. Importantly, G is contour
causal: in the expansion only vertices Vð~tÞ for which
ti < ~t < tf occur. The factors of iV cause a dynamical
sign problem, and in the approaches used to date, the
expansion order (number of iV insertions) is proportional
to the final time simulated. Our algorithm avoids this by
using a kind of skeleton expansion: it exploits the contour
causal nature of G to construct an exact propagator for
longer times in terms of an exact propagator for shorter
times, iteratively increasing the time up to which propa-
gators are known. We observe that the sign problem does
not worsen as a function of time, resulting in quadratic
algorithmic scaling overall.
The algorithm, which we illustrate in Fig. 1(c), begins

from the assumption that Gαα0 ðt1;t2Þ is known for all values

of t1 and t2 less than a designated time t↑. We now consider
the terms appearing in a computation of Gαα0 ðtf; tiÞ for
tf > t↑. If no interactions occur or all interactions occur
before t↑, the term can be subsumed into the (known)
propagation from ti to t↑, followed by a bare propagation
from t↑ to tf, as illustrated in diagram (1) of Fig. 1(c). If
interactions occur after t↑ but no interaction lines connect
times after t↑ to times before t↑, the propagation to t↑ is
captured by the known Gαα0 ðt↑; tiÞ, with the usual pertur-
bation in V required to capture propagation in the interval
t↑ → tf [see diagram (2)]. Finally, terms with interaction
lines spanning t↑ can be subsumed into diagrams with exact
propagators before t↑ and bare propagators after t↑ by
absorbing any interaction line that is not connected to a line
reaching past t↑ in the exact propagator [diagram (3)].
By summing these three classes of diagrams [(1), (2),

(3)] we count each bare diagram exactly once, producing a
formally exact solution for the propagator Gαα0 ðt1;t2Þ. The
procedure crucially relies on the contour-time causality of
the propagator: Gαα0 ðt1; t2Þ contains all possible diagrams
with interaction lines between t2 and t1 but no interaction
lines outside of this interval.
The main advantage is that improper repetitions of

simple inclusions [see Fig. 1(d)] are absorbed in the
propagator for t < t↑ and only need to be sampled for
t > t↑. The number of these diagrams grows exponentially
as a function of propagation time, causing the dynamical
sign problem: consider that the number of possible loca-
tions for inclusions increases roughly linearly with the
length of the propagation time. Since each individual
inclusion might be removed, this generates an exponential
number of possible diagrams. t↑ is a free parameter: as t↑ is
lowered to ti, the procedure reverts to the standard bare
expansion in V [see Fig. 1(a)]. As t↑ is increased towards
tf, fewer diagrams are sampled, but the exact propagator
has to be known for longer times.
The possibility of obtaining propagators based on

corrections to propagators for smaller times suggests a
numerical algorithm: starting from the knowledge of the
exact propagators within a short time interval ðti; tnfÞ with
tnf ¼ ti þ nΔt, e.g., as obtained from a bare Monte Carlo
simulation, we calculate propagators for the longer interval
ðti; tnf þ ΔtÞ ¼ ðti; tnþ1

f Þ by setting t↑ ¼ tnf and sampling
again the three classes of diagrams described in Fig. 1(c).
The process is iteratively repeated, gradually increasing the
interval on which propagators are known by “inching”
along the Keldysh contour. These successive small steps,
which gradually increase tf, have led us to term this
procedure the inchworm algorithm. We note in passing
that at the limit Δt → 0 the quantity summed in the
expansion introduced above becomes a product of the
proper propagator self-energy and the full propagator.
Since Gαα0 ðtf; tiÞ has two time arguments, propagation

must be carried out in both temporal directions. To reach a
final time t at a discretization of Δt requires 1

4
ðt=ΔtÞ2

FIG. 1 (color online). Comparison of diagrams sampled in
previous approaches [bare expansion (a) [18,19] and bold
expansion (b) [31,32]] to diagrams sampled in new approach
(c), and diagrams leading to dynamical sign problem in previous
methods (d). Thick lines: full propagators. Thin lines: bare
propagators. Medium (“bold”) lines: propagators resulting from
analytical resummation of subset of diagrams (here, NCA).
Wiggly lines: hybridization lines. Arrows indicate t↑.
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interdependent simulations when causality and time-
reversal symmetry are taken into account, resulting in an
algorithm that scales at least quadratically. To control the
complexity of the computation, it is also useful to limit the
maximum order of diagrams to be sampled and then verify
convergence with respect to increasing the diagram order
[25,32]. It can be shown that inchworm QMC calculations
truncated at a given order corresponds as Δt → 0 to a self-
consistent skeleton expansion with the self-energy trun-
cated to the same order (since the included terms are given
by all proper inclusions up to the respective order, in terms
of propagators containing the same). Based on experience
from these methods [41] we may therefore expect that most
contributions at long times will include interaction lines at
only a limited, time-independent range from the final time,
as illustrated in diagram (4) of Fig. 1(c).
We illustrate the inchworm scheme with the example of

an AIM with a time- and spin-dependent local field:

HðtÞ ¼
X

σ∈f↑;↓g
εσðtÞd†σdσ þUn↑n↓ þ

X
σk

εσka
†
σkaσk

þ
X
aσk

ðVσka
†
σkdσ þ H:c:Þ: ð2Þ

εσ are on-site level energies, σ ∈ f1;−1g a spin index, and
U is the on-site Coulomb interaction. εσk and Vσk are fully
defined by the dot-bath coupling, which we set to ΓðωÞ¼
2π

P
kV

�
σkVσkδðω−εkÞ¼Γ=½ð1þeνðω−ΩcÞÞð1þe−νðωþΩcÞÞ�,

with ν ¼ 10=Γ and ΩC ¼ 10Γ. We simulate a coupling
quench, i.e., the dynamics of a dot initially decoupled from
the bath, with the coupling turned on instantaneously at
time zero. We use the hybridization expansion, where the
interaction Hamiltonian V is taken to be the final term in
Eq. (2) (a detailed review is found in Ref. [28]).
In the top panel of Fig. 2 we show the time evolution of

the four populations (diagonal density matrix elements)
after a quench, as described by the bare hybridization
expansion for times t≲ 1.5 (light lines) and by our
inchworm algorithm (dark lines). The system, initially in
state j↑i, slowly relaxes to a configuration in which ↑ and ↓
are degenerate. We observe that the two numerically exact
algorithms agree within errors, but for t≳ 1, bare QMC
results become noisy.
The bottom panel of Fig. 2 shows that the bare error

increases exponentially in time (for the constant simulation
time per point used here). This is a direct consequence of
the dynamical sign problem. In contrast, the inchworm
error plateaus, allowing access to significantly longer times.
To account for the propagation of errors from short times to
longer times, the inchworm error estimate has been
obtained from the standard deviations between independent
runs with uncorrelated statistical errors. The plateau of the
noise implies that the average sign stays constant as a
function of time, and that there is no observable error
amplification due to repeated use of propagators from
earlier times. We have verified that significantly larger

errors than those used here do not result in a bias (not
shown). Of course, if the noise is allowed to grow dominant
the calculation fails (also not shown).
To assess convergence with expansion order, we plot the

magnetization Pj↑i − Pj↓i as a function of time in Fig. 3.

FIG. 2 (color online). Top: AIM population dynamics in the
Kondo regime following a coupling quench from a fully
magnetized state at U ¼ −2ε ¼ 8Γ and inverse temperature
βΓ ¼ 50. The bare hybridization expansion result [Fig. 1(a)] is
shown for times Γt < 1.5, along with the inchworm result
[Fig. 1(c)] up to Γt ¼ 10 (the maximum order is limited to 3,
at which convergence occurs). Bottom: Error estimate of data in
upper panel showing exponential increase of the error as a
function of time due to the dynamical sign problem in the bare
method, and roughly constant error in the inchworm method.

FIG. 3 (color online). Top: Population as a function of time
after a coupling quench at U ¼ 8Γ and inverse temperature
βΓ ¼ 50, computed for a system in the Kondo regime (left-hand
panels) and in the mixed valence regime (right-hand panels).
Different traces show the convergence as a function of inchworm
expansion order. Bottom: Error estimate of the populations for
different inchworm expansion orders as a function of time.
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The left-hand panel shows parameters in the Kondo regime
εσ ¼ −U=2, the right-hand panel shows parameters in the
mixed valence regime εσ ¼ −Γ=2. Results of the inchworm
method are exact only at infinite expansion order. If the
maximum expansion order is artificially restricted to 1, the
relaxation to steady state is slow (right-hand panel) or even
absent (left-hand panel). As the maximum order is gradu-
ally increased, the relaxation time scales shorten and
(for these parameters) converge at an expansion order of
∼3–4. In the limit Δt → 0 (we used a small but nonzero
Δt ¼ 0.05=Γ), the diagrams enumerated by the inchworm
algorithm correspond to the NCA diagrams for order 1, the
OCA diagrams for order 2, the two-crossing diagrams for
order 3, etc. Figure 3, therefore, shows that at least a two-
crossing approximation is required to correctly capture the
real-time evolution of this system.
The error analysis (bottom panels of Fig. 3) reveals that

the error for each order first increases, then converges to a
constant, thereby overcoming the exponential scaling
commonly associated with a sign problem. The error
increases with order, since the sampling space grows larger
and the calculations are performed at fixed computational
cost. However, because the error rises by an approximately
constant factor between any two orders, it may be elim-
inated by a small constant increase in computer time (a
factor of ∼3 in this case). This graceful scaling, along with
the rapid convergence to the exact result, establishes the
algorithm’s numerical exactness.
While the same results could be obtained by increasing

the order of a semianalytical skeleton expansion (e.g.,
improving the level of approximation from noncrossing to
one crossing to two crossing, etc.), the computational
expense typically increases very rapidly [the cost of each
added crossing in an n-crossing approximation is
∼ðt=ΔtÞ2]. In practice, to our knowledge, nonequilibrium
calculations even at the two-crossing level have been
performed only to relatively short time [41], and higher-
order calculations have not been carried out. Figure 3
shows that the inchworm algorithm can access the three-
and four-crossing approximations.
Figure 4 displays the time dependence of the probability

that the dot is empty or doubly occupied (reflecting charge
dynamics) and the magnetization, starting from either an
unmagnetized initial state (top panels) or a fully magnet-
ized initial state (bottom panels) and computed in the
presence of an oscillating magnetic field ðε↑ − ϵ↓ÞðtÞ ¼
2h sin ðωtÞ. The response to oscillating fields has been
studied in the context of currents induced by oscillating
voltages [42,43]. Current relaxation is rather fast even in
the Kondo regime [32], so the numerical problems are less
severe, but even in this case the equation of motion
methodology used in the more recent studies can have
convergence issues in the Kondo regime [16,17]. Here,
we focus on the more challenging issue of the spin
dynamics. Three regimes are compared: the noninteracting

case (left-hand panel), the edge of the Kondo regime (center
panel), and deeper in the Kondo regime (right-hand panel).
As U is increased and the temperature decreased, the
charge relaxation time is shortened while the spin relax-
ation time lengthens dramatically. We quantify the effects
by fitting the data to the simple phenomenological form
fðtÞ ¼ Aþ Be−γt þ C sin ðω0tþ ϕÞ. Fits are seen to be
extremely good and reveal a more than factor of 10 increase
in the spin lifetime and 50% decrease in the charge lifetime
as the Kondo regime is entered, as well as an interesting
dependence of the spin relaxation time on the strength of
the oscillating field. A more detailed study of the spin
dynamics and its dependence on the driving field will be
presented elsewhere.
In conclusion, we have presented a QMC method for

real-time propagation which we have termed the inchworm
algorithm, as it is based on gradually inching along the
Keldysh contour. The algorithm takes advantage of pre-
viously computed propagation information by reusing it
when extending the propagation to longer times. This
technique could be applied to any quantum many-body
system, but its general usefulness still requires investiga-
tion. We have implemented the algorithm for the AIM in
the hybridization expansion, where we were able to access

FIG. 4 (color online). AIM population and magnetization
dynamics at interaction strengths and temperatures shown, in
the presence of a time-dependent magnetic field hðtÞ¼2ΓsinðωtÞ,
with ω ¼ 5Γ. Dot is initially in the empty state j0i (top row) or in
the fully magnetized state j↑i (bottom). Lighter curves show time
evolution for h ¼ 0 with otherwise identical parameters. Dashed
black curves show fits to fðtÞ ¼ Aþ Be−γt þ C sin ðω0tþ ϕÞ. In
units where Γ ¼ 1, the charge relaxation rates (γ for j0i, j↑↓i) are
γc ¼ 2.83, 3.8, and 4.0 for ðU; βÞ ¼ ð0; 1Þ, (5.0,1), and (8.0,50),
respectively. The spin relaxation rates in the presence of the field
are γs ¼ 3.3, 0.81, and 0.25 (dot initially empty) and 2.4, 0.81,
and 0.25 (dot initially fully magnetized). The spin relaxation rates
for h ¼ 0 are 0.68 for U ¼ 5, β ¼ 1, and 0.11 for U ¼ 8, β ¼ 50.
The final amplitudes C are 0.19, 0.13, and 0.1. ϕ ¼ −2 in all
cases.
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slow spin dynamics in the strongly correlated Kondo
regime and observe its response to an oscillating magnetic
field. Our method suppresses the dynamical sign problem
to such a degree that the polynomially scaling part of the
algorithm becomes dominant. We also showed how high-
order skeleton expansions are accessible by truncating the
expansion, at a scaling which is quadratic at any order
rather than being governed by a power law with the power
proportional to the order.

The authors would like to thank Andrey Antipov and
Yevgeny Bar Lev for helpful comments and discussions.
A. J. M. and G. C. acknowledge support from the
Department of Energy under Grant No. DE-SC0012375.
E. G. acknowledges support by DOE ER 46932. D. R. R.
acknowledges support by NSF CHF 1464802.

[1] J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11, 124
(2015).

[2] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T.
Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod.
Phys. 75, 1 (2002).

[3] N. A. Zimbovskaya and M. R. Pederson, Phys. Rep. 509, 1
(2011).

[4] A. Dienst, E. Casandruc, D. Fausti, L. Zhang, M. Eckstein,
M. Hoffmann, V. Khanna, N. Dean, M. Gensch, S. Winnerl,
W. Seidel, S. Pyon, T. Takayama, H. Takagi, and A.
Cavalleri, Nat. Mater. 12, 535 (2013).

[5] M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan,
G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul,
J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson,
and R. D. Averitt, Nature (London) 487, 345 (2012).

[6] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and
D.M. Stamper-Kurn, Nature (London) 443, 312 (2006).

[7] D. Chen, M. White, C. Borries, and B. DeMarco, Phys. Rev.
Lett. 106, 235304 (2011).

[8] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and J.
Schmiedmayer, Science 337, 1318 (2012).

[9] F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801
(2005).

[10] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004).

[11] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[12] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.

Mech. (2004) P04005.
[13] Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).
[14] S. Welack, M. Schreiber, and U. Kleinekathöfer, J. Chem.

Phys. 124, 044712 (2006).
[15] J. Jin, X. Zheng, and Y. Yan, J. Chem. Phys. 128, 234703

(2008).

[16] R. Härtle, G. Cohen, D. R. Reichman, and A. J. Millis, Phys.
Rev. B 88, 235426 (2013).

[17] R. Härtle, G. Cohen, D. R. Reichman, and A. J. Millis, Phys.
Rev. B 92, 085430 (2015).

[18] L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403
(2008).

[19] P. Werner, T. Oka, and A. J. Millis, Phys. Rev. B 79, 035320
(2009).

[20] M. Schiró, Phys. Rev. B 81, 085126 (2010).
[21] A. E. Antipov, Q. Dong, and E. Gull, arXiv:1508.06633.
[22] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Phys.

Lett. A 238, 253 (1998).
[23] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys.

Rev. B 72, 035122 (2005).
[24] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.

Millis, Phys. Rev. Lett. 97, 076405 (2006).
[25] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 99, 250201

(2007).
[26] N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. B 77,

125101 (2008).
[27] E. Gull, P. Werner, O. Parcollet, and M. Troyer, Europhys.

Lett. 82, 57003 (2008).
[28] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.

Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
[29] P. Sémon and A.-M. S. Tremblay, Phys. Rev. B 85, 201101

(2012).
[30] H. Shinaoka, Y. Nomura, S. Biermann, M. Troyer, and P.

Werner, Phys. Rev. B 92, 195126 (2015).
[31] E. Gull, D. R. Reichman, and A. J. Millis, Phys. Rev. B 82,

075109 (2010).
[32] E. Gull, D. R. Reichman, and A. J. Millis, Phys. Rev. B 84,

085134 (2011).
[33] G. Cohen, E. Gull, D. R. Reichman, A. J. Millis, and E.

Rabani, Phys. Rev. B 87, 195108 (2013).
[34] G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis, Phys.

Rev. Lett. 112, 146802 (2014).
[35] G. Cohen, D. R. Reichman, A. J. Millis, and E. Gull, Phys.

Rev. B 89, 115139 (2014).
[36] R. E. V. Profumo, C. Groth, L. Messio, O. Parcollet, and X.

Waintal, Phys. Rev. B 91, 245154 (2015).
[37] G. Cohen and E. Rabani, Phys. Rev. B 84, 075150

(2011).
[38] G. Cohen, E. Y. Wilner, and E. Rabani, New J. Phys. 15,

073018 (2013).
[39] E. Y. Wilner, H. Wang, G. Cohen, M. Thoss, and E. Rabani,

Phys. Rev. B 88, 045137 (2013).
[40] E. Y. Wilner, H. Wang, M. Thoss, and E. Rabani, Phys. Rev.

B 89, 205129 (2014).
[41] M. Eckstein and P. Werner, Phys. Rev. B 82, 115115 (2010).
[42] P. Nordlander, N. S. Wingreen, Y. Meir, and D. C. Langreth,

Phys. Rev. B 61, 2146 (2000).
[43] X. Zheng, Y. J. Yan, and M. Di Ventra, Phys. Rev. Lett. 111,

086601 (2013).

PRL 115, 266802 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2015

266802-5

http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1038/nphys3215
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1016/j.physrep.2011.08.002
http://dx.doi.org/10.1016/j.physrep.2011.08.002
http://dx.doi.org/10.1038/nmat3580
http://dx.doi.org/10.1038/nature11231
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1103/PhysRevLett.106.235304
http://dx.doi.org/10.1103/PhysRevLett.106.235304
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevLett.95.196801
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1143/JPSJ.75.082001
http://dx.doi.org/10.1063/1.2162537
http://dx.doi.org/10.1063/1.2162537
http://dx.doi.org/10.1063/1.2938087
http://dx.doi.org/10.1063/1.2938087
http://dx.doi.org/10.1103/PhysRevB.88.235426
http://dx.doi.org/10.1103/PhysRevB.88.235426
http://dx.doi.org/10.1103/PhysRevB.92.085430
http://dx.doi.org/10.1103/PhysRevB.92.085430
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.81.085126
http://arXiv.org/abs/1508.06633
http://dx.doi.org/10.1016/S0375-9601(97)00957-2
http://dx.doi.org/10.1016/S0375-9601(97)00957-2
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.99.250201
http://dx.doi.org/10.1103/PhysRevLett.99.250201
http://dx.doi.org/10.1103/PhysRevB.77.125101
http://dx.doi.org/10.1103/PhysRevB.77.125101
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1209/0295-5075/82/57003
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevB.85.201101
http://dx.doi.org/10.1103/PhysRevB.85.201101
http://dx.doi.org/10.1103/PhysRevB.92.195126
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevLett.112.146802
http://dx.doi.org/10.1103/PhysRevLett.112.146802
http://dx.doi.org/10.1103/PhysRevB.89.115139
http://dx.doi.org/10.1103/PhysRevB.89.115139
http://dx.doi.org/10.1103/PhysRevB.91.245154
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.82.115115
http://dx.doi.org/10.1103/PhysRevB.61.2146
http://dx.doi.org/10.1103/PhysRevLett.111.086601
http://dx.doi.org/10.1103/PhysRevLett.111.086601

