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A planar crack generically segments into an array of “daughter cracks” shaped as tilted facets when
loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack
front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of
fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field
simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack
front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with
experimental observations. They further show that facet coarsening is a self-similar process driven by a
spatial period-doubling instability of facet arrays.
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Crack propagation is a main mode of materials failure.
Understanding and controlling this complex phenomenon
continues to pose both fundamental and practical challenges.
While quasistatic planar crack growth with a tensile stress
normal to the fracture plane (mode I) is well understood,
geometricallymuchmore intricate crack patterns can form in
varied conditions [1]. A few examples include thermal or
drying stresses that can cause cracks to oscillate and branch
[2,3], or reorganize into complex three-dimensional patterns
[4–6], nonlinear elastic effects that can induce crack
front instabilities even in mode I [7], or the superposition
of mode I and a shear stress parallel to the crack front (mode
III). This mixed-mode Iþ III fracture is observed in a wide
range of engineering and geological materials to produce
arrays of daughter cracks, which are shaped as tilted facets
and form by a geometrically complex crack front segmenta-
tion process [8–23].
Recent theoretical progress has been made to character-

ize the crack front instability leading to segmentation
[24,25] and to describe the propagation of daughter-crack
arrays [26]. However, theory and experiments have not
produced a consistent picture. Griffith’s energetic criterion
[27] predicts that planar crack growth is possible when the
elastic energy release rate
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exceeds a critical material-dependent threshold Gc, where
KI and KIII are the mode I and mode III stress intensity
factors (SIFs), respectively, which characterize stress diver-
gences near the crack front, μ is the shear modulus, and ν is
Poisson’s ratio. Phase-field simulations have revealed that
planar growth is linearly unstable against helical deforma-
tions of the crack front [24], and linear stability analysis in

the framework of linear elastic fracture mechanics (LEFM)
[25] has predicted that this instability occurs when KIII=KI
exceeds a threshold
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However, paradoxically, crack front segmentation is exper-
imentally observed for KIII=KI values much smaller than
this threshold [8,23] or even vanishingly small [22]. Also
poorly understood is “facet coarsening”, the progressive
increase of facet width and spacing with propagation length
from the parent crack.
In this Letter, we investigate both facet propagation and

coarsening by mixed-mode Iþ III fracture experiments that
allow us to visualize in situ complex crack morphologies
during quasistatic propagation, thereby providing much
more detailed geometrical information on crack front
evolution than conventional postmortem fractography.
Moreover, we model those experiments numerically with
a phase-field approach. Fracture in this model has been
shown to be governed by standard crack propagation laws
assumed in the LEFM theory in the limit where the micro-
scopic process zone around the crack front is much smaller
than all other dimensions [28], namely, Griffith’s criterion
and vanishing mode II SIF [29]. Therefore, the present
phase-field simulations allow us to answer the nontrivial
question of whether subcritical crack propagation observed
experimentally for KIII=KI<ðKIII=KIÞc is described by the
LEFM theory. This question could not be answered by linear
stability analysis, confined to small-amplitude in- and out-
of-plane perturbations of the crack front [25], or previous
simulations that focused on supercritical crack propagation
[24]. The results show unambiguously that subcritical crack
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propagation is quantitatively described by the LEFM theory
and shed new light on the secondary instability of facet
arrays underlying the coarsening process.
Experiments are carried out using Plexiglas beams and a

traditional three- or four-point bending setup [30]. To
introduce some amount of mode III, the initial planar
notch in the sample is tilted at an angle from the mode I
central plane of symmetry [19,39]. A special procedure is
used to initiate a sharp crack with a straight front [30]. The
corresponding values of the SIF for each angle and hence
KIII=KI have been obtained by finite element calculations,
which show that KIII=KI varies between approximately
0.1 and 0.5 when the notch angle varies between 15° and
45°, where zero angle corresponds to pure mode I loading.
Several beams were broken by fatigue in the bending setup
[30]. The advantage of this cyclic type of loading is that
the crack advance (i) is quasistatic, while leaving the crack
path unchanged in comparison to the one obtained under
monotonical increasing loading [40], and (ii) controlled by
the number of cycles so that complex crack morphologies
can be observed in situ at different stages of crack growth.
Observations were made using a Leica binocular or a
Keyence numerical microscope by transparency.
Examples of experimental images are shown in

Figs. 1(a)–1(g) for KIII=KI values of 0.3 and 0.5 corre-
sponding to initial notch angles of 30° and 45°, respectively.
Those images reveal several important features. First, facets
have a finger shape with curved tips and flat sides that is
consistent with the shape predicted by phase-field simu-
lations [Fig. 1(i) and Movie 1 of [30]]. Second, facets form
for values of KIII=KI both below and above the linear
stability threshold predicted by Eq. (2), ðKIII=KIÞc ≈ 0.39
for ν ¼ 0.38 of Plexiglas. Within optical resolution, only
energetically favored type A facets are observed to emerge
from the parent crack with a well-defined tilt angle θ
from the original fracture plane. Third, facets coarsen by
elimination of other facets, leading to an increase of both
facet width and facet spacing along the array with increas-
ing propagation length. Coarsening is clearly visible from
top views in Fig. 1(b) and in the sequence Figs. 1(c)–1(e),
which moreover shows that surviving facets maintain the
same angle while overgrowing others. Additional views are
given in Ref. [30].
Simulations were performed with a phase-field model

that regularizes stress-field divergences on a process zone
scale ∼ξ around the crack front. All energy dissipation
takes place on a characteristic time scale τ [41]. Since we
are primarily interested in modeling crack evolution in a
region away from the experimental sample boundaries
where KIII=KI is approximately uniform [19,32], we
carried out simulations in a rectangular slab geometry of
length Dx, width Dy, and height Dz, defined in Fig. 2(b),
with the origin defined at the center of the slab. We impose
fixed displacements at y ¼ �Dy=2, uyðx;�Dy=2; zÞ ¼
�Δy (mode I), and uzðx;�Dy=2; zÞ ¼ �Δz (mode III),

periodic boundary conditions in z that allow us to model a
periodic array of daughter cracks infinite in z [24]. We use a
“treadmill” that adds a strained ðy; zÞ layer at x ¼ Dx=2 and
removes a layer at x ¼ −Dx=2 when the crack has
advanced by one lattice spacing. This allows us to simulate
crack propagation lengths much longer than Dx (a ≫ Dx),
thereby modeling propagation in a slab infinitely long in x
[30]. All simulations are performed with ν ¼ 0.38 of
Plexiglas. We simulated both quasistatic propagation,
where the elastic field is relaxed at each time step of crack
advance, and dynamic propagation by solving the full

FIG. 1 (color online). In situ microscope images (a)–(g) of
fatigue cracks in Plexiglas at different stages of crack advance in
mixed-mode Iþ III loading depicted schematically in (h) and
corresponding example of crack front segmentation in phase-field
simulation (i). KIII=KI ≈ 0.3 in (a)–(e) and ≈0.5 in (f) and (g);
(a), (b), and (f) are experimental views from a direction
approximately perpendicular to the plane of the parent crack
with facets propagating downwards, while views (c), (d), (e), and
(g) are views with the crack propagation direction out of the page.
Views (c), (d), and (e) correspond to different stages of crack
advance increasing from (c) to (e). Broken (pristine) regions of
the samples appear in black (light blue) or darker (lighter) gray
depending on the viewing direction. The bar scale is 1 mm in all
images. The red dashed lines in (a) highlight the curved fronts of
two facets as guides to the eye; curved tips are clearly visible in
(f). (i) Snapshots of phase-field fracture surfaces (ϕ ¼ 1=2
surfaces) at different stages of crack advance increasing from
top to bottom, showing that energetically favored A facets [18]
propagate ahead of B facets, eventually outgrowing them com-
pletely. Simulation parameters are G=Gc ¼ 1.5, KIII=KI ¼ 0.5,
and box dimensions Dx ¼ 307ξ, Dy ¼ 100ξ, and Dz ¼ 200ξ.
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elastodynamic equations. Both sets of simulations yielded
similar results for the range G=Gc ≤ 1.5 where the ratio
of the crack propagation speed to the shear wave speed
v=c ≤ 0.3 is small enough to neglect inertial effects [30].
We first carried out simulations to check quantitatively the

theoretical prediction of Eq. (2). For this purpose, we slightly
perturbed the planar parent crack with a small-amplitude
helical perturbation of the form δxfront þ iδyfront ¼ A0e−ikz,
where δxfront and δyfront indicate the x and y components of
deviations of the front from the reference planar crack,
respectively, and k ¼ 2π=Dz fits one wavelengthDz ¼ Λ of
the perturbation in the periodic domain in z. The stability of
planar crack propagation is then determined by tracking the
amplitude of the perturbation that grows or decays exponen-
tially in time [30] if propagation is unstable, as illustrated in
Figs. 2(a)–2(d), or stable, respectively. Simulations were
carried out by increasingKIII=KI in small steps to determine
the threshold ðKIII=KIÞc and repeating this procedure for
increasing values of Dy=Λ to quantify finite size effects.
Figure 2(e) shows that ðKIII=KIÞc increases monotonically
with Dy=Λ and approaches a value reasonably close to the
prediction ðKIII=KIÞc ≈ 0.39 of Eq. (2) in the large system
size (Dy=Λ ≫ 1) limit. We checked that instability thresh-
olds reported in Fig. 2(e) remain unchangedwithin error bars
if a randomperturbationof the crack frontwas used insteadof
a helical perturbation [30]. We conclude that the LEFM
theory [Eq. (2)] and phase-field modeling predict similar
linear instability thresholds in the large system size limit,
even though facets are experimentally observed well below
this threshold.
Next, in order to explore the nonlinear character of the

bifurcation from a planar to segmented crack front, we
measured experimentally the facet tilt angle θ extracted
from three-dimensional maps of postmortem fracture sur-
faces obtained using a profilometer as detailed in Ref. [32].

The angle θ is plotted versus KIII=KI in Fig. 3(a).
Furthermore, we investigated computationally the propa-
gation of periodic arrays of A facets in the large system size
limit relevant for experiment. We chose Dy=Λ ¼ 2 based
on the results of Fig. 2(e) and an examination of strain
fields showing that finite size effects become negligible
when Dy=Λ ≥ 2 [30]. We also suppressed coarsening by
choosing Dz ¼ Λ with periodic boundary conditions along
z. In this geometry, we tracked the steady-state branch of
propagating solutions by decreasing KIII=KI starting from
values above the linear instability threshold to values below
this threshold, as low as 0.07 to span the entire exper-
imental range of mode mixity. For each KIII=KI value, we
allowed the facet to relax to a new stationary shape and tilt

FIG. 2 (color online). Snapshots of phase-field simulations
illustrating the destabilization of planar crack growth for
KIII=KI ¼ 0.4. The crack propagation length a increases from
(a) to (d), and both the crack front (blue lines) and its in-plane and
out-of-plane projections (red lines) are shown. (e) Plot of linear
instability threshold ðKIII=KIÞc versus Dy=Λ, where Λ represents
the mean facet spacing. Planar growth is unstable (stable) above
(below) the filled circles where error bars are defined in Ref. [30].
In all simulations, G ¼ 1.5Gc, Dx ¼ 230ξ, and Dz ¼ Λ ¼ 60ξ.

FIG. 3 (color online). (a) Comparison of facet tilt angles
obtained from experiments and simulations, where red and blue
arrows indicate the instability thresholds of planar crack propaga-
tion forDy=Λ ¼ 1 andDy=Λ ¼ 2, respectively [see Fig. 2(e)], and
theoretically predicted assuming shear-free facets (dashed line)
[16,24]. (b) Snapshots of a phase-field simulation for Dy=Λ ¼ 1

demonstrating the subcritical nature of the bifurcation froma planar
to segmented crack propagation. A segmented front solution for
KIII=KI ¼ 0.5 (θ ¼ 31°) was used as an initial condition in a
simulation forKIII=KI ¼ 0.07, causing the facet angle to relax to a
lower steady-state value (θ ¼ 11.2°) (see Movie 2 of [30]).
(c) Out-of-plane and in-plane (inset) crack front projections. In
all simulations,Dx¼154ξ,Dy¼Dz¼60ξ,Λ¼60ξ, andG ¼ 1.5Gc.
(d) Schematic diagram of subcritical bifurcation recapitulating the
experimental and simulation results with solid (dashed) lines
representing stable (unstable) solutions.
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angle, as illustrated in Fig. 3(b) for a simulation where
KIII=KI was decreased from 0.5 to 0.07. The computed tilt
angles are compared to experimental results in Fig. 3(a)
with the corresponding facet shapes shown in Fig. 3(c).
Both the facet shapes, which gently curve at their extrem-
ities in the yz plane due to elastic interactions between
neighboring facets, and the tilt angles are in good quanti-
tative agreement with experimental observations within
measurement errors. Figure 3(a) also shows that computed
tilt angles are weakly dependent on system size (Dy=Λ) and
fall below the prediction of a simple theory, which assumes
that facets are shear-free [16,24]. Those results demonstrate
that propagating segmented front solutions exist over the
entire range of KIII=KI investigated experimentally, includ-
ing values less than ðKIII=KIÞc. We conclude that the
bifurcation from a planar to segmented front is strongly
subcritical, with bistability of planar and segmented crack
growth for KIII=KI < ðKIII=KIÞc as illustrated schemati-
cally in Fig. 3(d).
To characterize coarsening in phase-field simulations,

we investigated the stability of a periodic array of facets by
repeating the above series of simulations with several
facets, corresponding to Dz ¼ nΛ with n ≥ 2. This geom-
etry is motivated by the striking similarity between the
coarsening behavior of facets in the present experiments
[Figs. 1(a)–1(g)] and coarsening of curved fronts in other
interfacial pattern forming systems, in particular, viscous
fingering [42] and dendritic crystal growth [43,44]. In those
systems, coarsening of finger arrays is associated with a

spatial period-doubling linear instability of the array
[43,44]. While longer wavelength perturbations of the
array can also be unstable, period doubling leading to the
elimination of one of every two fingers in the array is
generically the fastest growingmode. Results of simulations
for n ¼ 2 in Fig. 4(a) show that arrays of facets exhibit a
similar period-doubling instability driven by elastic inter-
actions between facets. We have checked that period
doubling is the fastest growing mode by also performing
simulations with n > 2 [30]. This instability yields an
increase (decrease) of the SIF and hence the energy release
rate at the tips of leading (lagging) facets. The amplification
rate of instability is obtained by computing the difference of
x-tip position ΔxtipðtÞ between leading and lagging facets,
which grows exponentially in time starting from an infini-
tesimal perturbation, ΔxtipðtÞ ≈ Δxtipð0Þeωv0t=Λ, where v0
and Λ are the initial facet growth velocity and spacing,
respectively. The slopes of semilog plots of ΔxtipðtÞ=Λ
versus v0t=Λ in Fig. 4(b) yield values of ω that increase
markedly with KIII=KI, showing that a larger mode III
component leads to a faster elimination rate of facets.
Coarsening, clearly visible in Fig. 1(b) and other exper-

imental views [30], was quantified experimentally by
analyzing postmortem fracture surfaces [32]. The results
show that the relation between the mean facet spacingΛ and
the crack propagation length a is approximately linear, with
a mean slope β≡ dΛ=da increasing with KIII=KI [inset in
Fig. 4(b)]. To relate the coarsening rates in phase-field
simulations and experiments, we derive a simple evolution
equation for the average array spacing Λ based on a
dynamical mean-field picture as previously done for den-
dritic arrays [43]. The coarsening rate β≡ dΛ=da≈
ΔΛ=Δa, where ΔΛ is the change of array spacing due to
the elimination of one of every two facets along the array or
ΔΛ ≈ Λ, while Δa is the distance that the facets propagated
during the elimination process. Since elimination occurs via
the exponential amplification of small perturbations, facets
will propagate an average distance Δa ∼ Λ=ω during this
process, yielding the prediction β ∼ ω, or β ¼ Cω, where C
is a constant prefactor of the order of unity. The comparison
in the inset in Fig. 4(b) shows that this simple theory is able
to predict reasonably well the increase of the coarsening rate
with KIII=KI up to the value of the constant prefactor C ¼
0.198 determined from a global best fit to the experimental
data for all KIII=KI values.
The reasonably good quantitative agreement between

simulated and observed morphologies suggests that LEFM
is an adequate theory to describe complex geometrical
features of both brittle and fatigue cracks in mixed-mode
Iþ III fracture. Going beyond linear stability analysis, the
present results show that the subcritical propagation of
segmented cracks is theoretically possible. Nevertheless,
they do not identify the mechanism and scale of subcritical
facet formation. As suggested by a recent LEFM analysis,
material imperfections may contribute to this process [45].

FIG. 4 (color online). (a) Illustration of spatial period-doubling
instability in a phase-field simulation for KIII=KI ¼ 0.5; out-of-
plane and in-plane projections of crack fronts are plotted in the
top panel and the bottom panel, respectively (see Movie 3 of
[30]). (b) Semilog plot of difference of tip positions along the
propagation x axis between leading and lagging facets versus
scaled time for different KIII=KI. Inset: Coarsening rate β versus
KIII=KI obtained from experiments and phase-field simulations.
In all simulations, Dx ¼ 307ξ, Dy ¼ 60ξ, Dz ¼ 120ξ, Λ ¼ 60ξ,
and G ¼ 1.5Gc.
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However, this scenario, and even more fundamentally the
ability of LEFM tomodel subcritical facet formation, remain
to be explored both computationally and experimentally.
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