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Dislocation climb is a ubiquitous mechanism playing a major role in the plastic deformation of crystals at
high temperature. We propose a multiscale approach to model quantitatively this mechanism at mesoscopic
length and time scales. First, we analyze climb at a nanoscopic scale and derive an analytical expression of
the climb rate of a jogged dislocation. Next, we deduce from this expression the activation energy of the
process, bringing valuable insights to experimental studies. Finally, we show how to rigorously upscale the
climb rate to a mesoscopic phase-field model of dislocation climb. This upscaling procedure opens the way
to large scale simulations where climb processes are quantitatively reproduced even though the mesoscopic
length scale of the simulation is orders of magnitude larger than the atomic one.
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Complex multiscale phenomena are ubiquitous in mate-
rials science and make the prediction of macroscopic
properties a formidable challenge. In metallic alloys,
macroscopic properties are often controlled by the interplay
between different phases or precipitates and the nucleation,
multiplication, and propagation of defects such as dislo-
cations, cracks, voids, etc. These phenomena are driven by
atomic forces that manifest themselves at mesoscopic time
and length scales, out of reach of atomistic simulation
techniques. A solution to this dilemma is to develop
mesoscopic coarse-grained models that operate at inter-
mediate time and length scales between the atomic and the
macroscopic scales we want to reach. Obviously, an
accurate mesoscopic description must incorporate lower
scale fluctuations and, therefore, a proper choice of the
intermediate scales is such that the degrees of freedom that
operate at lower scale reach a quasiequilibrium state at the
mesoscale. These degrees of freedom will then be
embedded into mesoscopic parameters. This kind of multi-
scale approach has been successfully developed to study
quantitatively alloy solidification [1,2] and nucleation of
new phases [3] at mesoscopic scales.
Plastic deformation in crystals results from the move-

ment of dislocations along specific crystallographic planes.
At high temperatures, when vacancy diffusion is activated,
dislocations change glide plane by absorbing or emitting
vacancies. Therefore, this climb mechanism plays a central
role in the plastic deformation of metals. In this Letter, we
propose an upscaling procedure for dislocation climb
proceeding in two steps. First, we analyze the lower scale
problem of the interaction between dislocations and vacan-
cies. We derive an analytical expression for the climb rate
of a dislocation presenting a periodic distribution of jogs.
Attachment-detachment kinetics of vacancies to the dis-
location core is taken into account, as well as pipe diffusion
between jogs. Therefore, our model goes beyond the usual
approaches of climb, where the exchange kinetics is always

neglected and where the presence of jogs and core diffusion
are either ignored [4–7] or at best approximately treated [8].
Next, we deduce the activation energy of the climb process
from the analytical climb rate, bringing new insight into
previous experimental measurements. Finally, we present a
phase field model (PFM) that treats dislocations at the
mesoscale. We show how to link rigorously the kinetic
parameter of the PFM to the lower scale analysis.
Climb rate of a jogged dislocation.—Climb processes do

not operate homogeneously along the dislocation line, but
rather at specific defects, called jogs, distributed along the
line [see Fig. 1(a)]. The formation energy of jogs is often
high, in particular in face-centered cubic (fcc) metals, and
their density may be small. In addition to this simple
argument, experimental observations [9–13] suggest that
climb might be limited by low jog concentrations.
Therefore, a realistic description of climb must account
for bulk diffusion of vacancies toward the dislocation core,
the exchange dynamics between bulk and core, diffusion
along the core between the jogs, and finally attachment-
detachment kinetics at the jogs. As testified by atomistic
calculations [14–16], these mechanisms are controlled by
various energy barriers depicted in Fig. 1(b): the bulk and

FIG. 1 (color online). (a) Schematic vacancy diffusion around a
jogged dislocation. Red and blue arrows illustrate, respectively,
core and bulk vacancy diffusion. (b) Energy profile experienced
by a vacancy diffusing in the core (red) and escaping to the
volume (blue).
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core vacancy formation (respectively, migration) energies
Ev
f and Ec

f (respectively, E
v
m and Ec

m), the exchange energy
barriers Ev−c and Ec−v from the bulk to the core and vice
versa. The vacancy diffusion coefficients in the bulk and in
the core are, respectively, defined as Dv ¼ D0 expð−βEv

mÞ
and Dc ¼ D0 expð−βEc

mÞ (kT ¼ 1=β denotes the thermal
energy), whereD0 is related to the Debye frenquency ν and
the interatomic distance a.
We consider a straight edge dislocation of core radius rc

with a regular distribution of jogs separated by a distance dj
[see Fig. 1(a)]. As commonly assumed [13,17], we consider
that the influence of the jog velocity on the diffusion
profiles is negligible, and we obtain two steady-state
diffusion equations associated, respectively, to the bulk
and core regions. For simplicity reasons, the attachment-
detachment kinetics at the jogs is assumed to be instanta-
neous compared to other processes [18]. Therefore, in the
immediate neighborhood of the jogs, vacancies are at
thermodynamic equilibrium where the osmotic force,
proportional to the chemical potential of vacancies,
balances the climb component of the Peach-Koehler force
acting on the dislocation and generated by the external
stress σa. The vacancy concentration at r ¼ R∞ is consid-
ered to be maintained at c∞, representing a possible
supersaturation or under saturation of vacancies far from
the dislocation.
By generalizing the procedure of Gilmer et al. [19] to our

cylindrical geometry, we show in the Supplemental
Material [20] that the diffusion equations can be exactly
solved for the bulk and core vacancy fields, and therefore
for the vacancy fluxes. The exact climb rate expression
contains an infinite sum of terms involving modified Bessel
functions. However, a straightforward but still precise
approximation (we comment on that point in Fig. 2) leads
to the following simple expression:

v ¼
2πDvc0v

b

�
c∞
c0v
− eβσ

aΩ
�

ln
�
R∞
rc

�
þ l2v

r2c

h
1þ 2α2

�
dj
2αlc

coth dj
2αlc

− 1
�i ; ð1Þ

where c0v ¼ expð−βEv
fÞ is the equilibrium vacancy con-

centration in the bulk, Ω is the atomic volume, and where
the characteristic length scales lc and lv and the coefficient
α are defined by

l2c ¼
Dcrc
aν

expðβEc−vÞ; ð2Þ

l2v ¼
Dvrc
aν

expðβEv−cÞ; ð3Þ

α2 ¼ l2v þ r2c lnðR∞=rcÞ
2l2v

: ð4Þ

The length scale lc is the typical diffusion length of a
vacancy in the dislocation core, whereas lv is the diffusion
length associated to the attachment time to the dislocation
core: if lv ≪ rc, a vacancy coming close to the core will be
absorbed before it diffuses away. We now present in Fig. 2
an analysis of the climb rate given in Eq. (1). We set the
temperature to T ¼ 600 K and use material parameters
pertaining to aluminum [21–23] (Ev

m ¼ 0.61 eV, Ec
m ¼

0.35 eV, Ev
f ¼ 0.67 eV, Ec

f ¼ 0.50 eV, D0 ¼
1.51 × 10−5 m2=s, ν ¼ 9.3 × 1013 s−1, a ¼ 0.285 nm,
rc ¼ 1 nm). The results are presented in the form v=veq,
where

veq ¼
2πDvc0v

b lnðR∞=rcÞ
�
c∞
c0v

− eβσ
aΩ
�

ð5Þ

is the climb rate obtained when the dislocation line is
supposed to be an homogeneous and perfect sink or source
of vacancies, i.e., at local equilibrium with vacancies [4].
This is the climb rate used in the most recent analysis where
climb has been incorporated in dislocation dynamics codes
[5–7,24,25] and in dislocation density based theories [26].
When the volume-core exchange barrier is small (typically
Ev−c < Ev

m), v=veq is close to 1 only if the interjog distance
dj is small enough. In that case, attachment kinetics to the
core and jog density are high enough for the vacancies to
reach a local equilibrium all along the dislocation line and,
therefore, the climb process is simply controlled by bulk
diffusion. However, when dj increases beyond a critical
threshold which depends on core diffusion, the climb rate
decreases significantly and the local equilibrium hypothesis
is no longer valid. When the attachment kinetics is slow
(Ev−c > Ev

m), v=veq is always significantly smaller than 1.
The climb process is now mostly controlled by the attach-
ment kinetics and, for large dj, also by core diffusion. The
expression proposed in [8] (dashed line in Fig. 2) does not
incorporate the significant influence of the attachment

FIG. 2 (color online). Climb rate v in units of veq of Eq. (5) (see
text) as a function of the interjog distance for two volume-core
exchange energy barriers. In red: Ev−c ¼ 0.4 eV [full line: exact
expression, dashed line, Eq. (1)]; in blue: Ev−c ¼ 0.8 eV [Eq. (1)
and exact expressions are indistinguishable]. In dashed black:
climb rate according to Ref. [8].
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kinetics nor the overlap of the diffusion profile from
neighboring jogs.
Activation energy.—The dislocation climb rate is often

difficult to extract precisely from experimental observa-
tions partly because deformation often occurs through other
mechanisms such as dislocation glide. Nonetheless,
because dislocation climb is the limiting process, the
activation energy of creep measured experimentally can
be associated to the climb process alone. In our theoretical
approach, the apparent activation energy of dislocation
climb can be computed as Ea ¼ −∂ lnðvjdj;fmÞ=∂β. We
consider here that the jog population is constant and
maintained out of equilibrium through nonthermally acti-
vated mechanisms such as dislocation intersections [4].
Also, the effect of the driving force fm ¼ c∞=c0 −
expðβσaΩÞ is withdrawn for generality reasons by comput-
ing the activation energy at fm constant. This effective
activation energy is plotted in Fig. 3 in the case of slow
(Ev−c ¼ 0.8 eV) and fast (Ev−c ¼ 0.4 eV) volume-core
exchanges. In the latter case and for small interjog
distances, the activation energy Ea converges to the self-
diffusion activation energy Ev

f þ Ev
m as expected in the case

of high jog concentration [4]. On the other hand, for larger
interjog distances, Ea drops to smaller values. In this
regime, the core diffusion becomes a limiting process
and the activation energy converges to an intermediate
value between the bulk self-diffusion and the core self-
diffusion energy Ec

f þ Ec
m. It is interesting to note that

the drop of climb rate is necessary accompanied by the
activation energy dropping to lower values than the self-
diffusion energy.
In Ref. [27], Sherby et al. reported that the creep

activation energy varies from the self-diffusion energy to
a plateau value of 1.19 eV when the creep temperature
decreases. This value is significantly lower than the self-
diffusion energy of aluminum and the authors have pointed
out the disagreement between their results and the creep
models existing at the time. In light of our results, the drop
of the activation energy could be interpreted as a decrease

of the jog density along the dislocation line at lower
temperatures. Albeit this interpretation is appealing, it
must be kept in mind that these experiments were per-
formed on polycrystalline samples where grain boundary
diffusion could be another deformation mechanism at low
temperatures.
Figure 3 also shows that for slow volume-core exchanges

(Ev−c ¼ 0.8 eV) and at high jog concentrations, the vol-
ume-core exchange process becomes limiting and the
activation energy is larger than the self-diffusion energy.
This can be related to the creep experiments performed

by Edelin et al. on magnesium samples [11–13]. The
authors show that the activation energy associated to
dislocation climb is approximately 1.8 eV, significantly
greater than the self-diffusion energy of Mg: 1.43 eV. They
try to interpret this result by considering that the jog density
is close to thermal equilibrium if the jog formation energy
is Ej¼ 1.8−1.43¼ 0.37 eV. However, such a low jog
density leads to climb rates several orders of magnitude
lower than reported [13]. Moreover, the micrographs in
Ref. [11] show that dislocations are curved in their climb
plane, implying a high jog density. Another interpretation
of these experimental measurements can be made by
considering that the unexpectedly elevated activation
energy is representative of the energy barrier for
volume-core exchanges. In the high jog density regime,
such an energy barrier leads to an apparent activation
energy higher than the one of self-diffusion (Fig. 3), while
the climb rate is only moderately decreased (Fig. 2).
Upscaling to a phase field model (PFM).—The main

motivation of the Letter is to upscale the atomic scale
dislocation properties to a larger mesoscopic scale. The
PFM is one of the most popular methods to handle complex
microstructure and interface evolutions at mesoscale.
Recently, it has been extended to incorporate dislocation
climb [28,29]. We show here how to inform this PFM with
the above description of the climb of jogged dislocation.
The PFM relies on two fields: the vacancy concentration
field c and a plastic field ϕ. A dislocation loop is identified
as the boundary between a platelet of thickness d, within
which ϕðrÞ ¼ 1, and the matrix within which ϕðrÞ ¼ 0.
The free energy is written as

F¼
Z

dr3
�

1

2βΩc0v
ðc− c0vÞ2þAϕ2ð1−ϕÞ2þB

2
jn∧∇ϕj2

þ 1

2
½ϵij− ϵ0ijðc;ϕÞ�Cijkl½ϵkl− ϵ0klðc;ϕÞ�− σaijϵij

�
: ð6Þ

The first contribution is the vacancy chemical free energy
approximated by its second order expansion around the
bulk equilibrium concentration c0v. The second and third
contributions represent the dislocation core energy; n is a
unit vector perpendicular to the vacancy loop and coef-
ficients A and B control the core properties, in particular its
width w ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2B=A
p

. The last two components represent the

FIG. 3 (color online). Apparent activation energy vs interjog
distance for different temperatures and for Ev−c ¼ 0.4 eV and
Ev−c ¼ 0.8 eV.
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elastic energy: Cijkl are the elastic constants, σaij the applied
stress, and ϵ0ijðc;ϕÞ¼½hðϕÞ=2d�ðbinjþbjniÞþδijðV�=3ΩÞc
the eigenstrain tensor associated with plastic and vacancy
fields; hðϕÞ is a monotonic function such that hð0Þ ¼ 0,
hð1Þ ¼ 1, and h0ð0Þ ¼ h0ð1Þ ¼ 0 and V� is the vacancy
relaxation volume. Considering the marginal effect of
elastic field generated by the vacancies [29,30], we neglect
this contribution and set V� ¼ 0.
We turn now to the field evolution equations. The

dislocation loops shrink and grow by exchanging vacancies
with the bulk in such a way that the combined field ψ ¼
cþ c�ϕ is conserved (c� ¼ b=d is the number of vacancies
involved in a unitary climb process). Therefore, ψ obeys a
Cahn-Hilliard equation, _ψ ¼ ∇ ·M∇ðδF=δψÞ, whereas the
plastic field ϕ follows a simple Allen-Cahn equation,
_ϕ ¼ −LðδF=δϕÞ. Using the more natural fields c and ϕ,
we obtain

_c ¼∇ ·M∇ δF
δc

þ Lc�
�
δF
δϕ

− c�
δF
δc

�
; ð7Þ

_ϕ ¼ − L

�
δF
δϕ

− c�
δF
δc

�
: ð8Þ

Because elastic relaxation is much faster than diffusive
processes, the elastic fields εij are supposed to relax
quasistatically. Accordingly, we impose elastic equilibrium
by setting ð∂σij=∂xjÞ ¼ 0 where the local stress is defined
by σij ¼ ðδF=δεijÞ þ σaij. It appears in Eq. (7) that the
coefficient M is simply the vacancy mobility which, in the
limit of small concentration, is given byM ¼ βΩDvc0v [31].
The mesoscopic mobility coefficient L controls the
exchanges between the fields fcg and fϕg, i.e., the rate
of absorption or emission of vacancies at the dislocation
core. Thus, it can incorporate phenomenologically the
lower scale behavior of jogs and core diffusion discussed
above. For the purpose of upscaling these properties, we
perform an asymptotic analysis of the PFM and derive a
closed-form expression for the climb velocity. We consider
a dislocation dipole introduced with a platelet (where
ϕ ¼ 1) of thickness d oriented along the x axis (see inset
of Fig. 4). We assume the dipole to be long enough to
neglect the interdislocation interactions. The dislocation
core width w is chosen to be much smaller than the
diffusion length and we consider that the vacancy field
is quasistatic. Within these limits, the phase field will be of
the form ϕðx; tÞ ¼ f½x − x0ðtÞ� and its spatial derivative
along the climb direction is sharply peaked around the
position x0ðtÞ of the dislocation. Multiplying Eq. (8) by this
derivative and integrating in a small domain around the
dislocation core leads to a simple equation that relates the
climb rate to the concentration cd in the vicinity of the core
and to the stress component σa along the direction
perpendicular to the vacancy loop:

vc ¼
3wb
d

L

	
1

βΩc0v
ðcd − c0vÞ − σa



: ð9Þ

Within the quasistatic approximation and away from the
dislocation core, Eq. (7) reduces simply to ∇2c ¼ 0 whose
solution in cylindrical symmetry is straightforward.
Considering the boundary conditions c∞ at R∞ and an
inner boundary condition at reffc ∼ w where the vacancy
concentration reaches cd, a simple circular integration of
the vacancy flux leads to the following climb rate

vc ¼
2πDvc0v

b ln ðR∞=reffc Þ
�
c∞
c0v

−
cd
c0v

�
: ð10Þ

Solving (9) and (10) for cd leads to the following PFM
climb rate:

vPFM ¼
2πDvc0v

b

�
c∞
c0v
− βσaΩ − 1

�

ln
�
R∞
reffc

�
þ 2πd

3w
βΩDvc0v
Lb2

: ð11Þ

By direct identification with Eq. (1) (considering the Taylor
expansion of the exponential, valid for the low stresses used
in creep experiments), we deduce a link between the PFM
parameters (mobility L, dislocation core width w, and
vacancy platelet thickness d) and the atomic scale dis-
location properties (interjog distance dj, diffusion length
scales lv and lc):

L ¼ 2πdΩDvc0vβ=3wb2

ln
�
reffc
rc

�
þ l2v

r2c

n
1þ 2α2

h
dj
2αlc

coth
�

dj
2αlc

�
− 1

io : ð12Þ

Thus, the parameter L can be chosen to reproduce quanti-
tatively the climb rate of a joggeddislocation. The othermajor
outcome of this upscaling procedure is that it can be used for
any vacancy loop thickness d which, from the numerical
point of view, is simply equal to the grid spacing Δx used in

FIG. 4 (color online). Climb rate of an isolated dislocation for
different grid spacings Δx and interjog distances dj. The PFM
and exact results are represented by symbols and dotted lines,
respectively. The inset shows the configuration used in these
simulations.
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the implementation of the PFM equations. Therefore, any
grid spacing Δx may be used, provided that the mobility
coefficient L is chosen according to Eq. (12). This is
illustrated in Fig. 4, where we show that the PFM climb rate
is almost identical to the exact one (the difference is lower
than 1%), even if Δx (and therefore the mesoscopic dis-
location core width w) is orders of magnitude larger than the
interatomic distance. Thus, this multiscale procedure opens
the possibility to study quantitatively the climbbehavior of an
assembly of dislocations in large scale systems.

We believe that this multiscale procedure can also be
readily applied to other physically relevant situations where
the interface mobility is affected by its atomic structure
such as epitaxial growth of vicinal surfaces or solidification
in the case of atomically faceted interface [32].
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