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A theory of partial flame propagation driven by the gravitational field is developed. Using the on-shell
approach, equations for the gas velocity distributions and the front shape of a steady flame are obtained and
solved numerically. It is found that the solutions describing upward flame propagation come in pairs having
close propagation speeds, and that the effect of strong gravity is to reverse the burnt gas velocity profile
generated by the flame. On the basis of these results, a complete explanation is given of the intricate
observed behavior of flames near the limits of inflammability, including the dependence of the
inflammability range on the size of the combustion domain, the large distances of partial flame
propagation, and the progression of flame extinction.
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As is well known, the gravitational field has a profound
effect on the dynamics of reaction waves, be it flame
propagation in gaseous mixtures under terrestrial condi-
tions [1] or thermonuclear waves in supernovae [2].
Gravity’s impact on deflagrations is important practically
at all scales, from the laboratory explosions in tubes to their
industrial applications. But it is especially pronounced near
the inflammability limits—the end points of the range of
fuel concentrations over which a given mixture is able to
sustain laminar flame propagation. As these are of special
interest with regard to combustion safety, much effort has
been spent on their experimental and theoretical study
[3–8].
The inflammability limits are measured in vertical tubes

closed at the upper end, sufficiently wide to make negli-
gible heat loss to the tube walls, ignition being effected at
the bottom, open, end (a standard tube is 5.1 cm in diameter
and 1.8 m long [3]). In view of the practical significance of
methane-air and propane-air flames, elaborate precision
measurements of their limit properties have been performed
in tubes of different diameters [3–6]. The studied flames
were characterized by different fresh-to-burnt gas density
ratios θ ¼ 4.7 to θ ¼ 5.3, and had different burning rates
and molar-mass relations between fuel and oxidizer.
Despite these distinctions, a great deal of similarity in
the limit flame behavior has been established, which can be
summarized as follows. (i) Before extinction, flames can
propagate steadily over distances largely exceeding the
flame size, at least in tubes with diameter up to 10 cm. The
onset of extinction is simultaneous with a slight increase in
the flame speed. (ii) The inflammability range narrows in
wider tubes; that is, the minimal burning rate required to
propagate the flame increases with the tube diameter.
(iii) The propagation speed of the limit flames in a tube
of given diameter coincides, within the experimental error,
with the speed of an air bubble rising in the same tube filled
with water. In particular, it is independent of the fuel type.

(iv) Reactants flow into the rising flame, but only around
the hot postflame structure that continues to rise with the
same speed after the flame extinction. During extinction,
the flame center vanishes first, followed rapidly by
the edges.
Taken together, these observations make the nature of

partial flame propagation and its extinction quite a riddle.
On the one hand, the apparent flame steadiness before
extinction means that the characteristic time of partial flame
propagation is much larger than the transit time of gas
through the region occupied by the flame (transition
domain in what follows). On the other hand, the final
stage of the process is much more rapid, according to (iv).
The latter would take place if the extinction process were
buoyancy driven, as is also suggested by observation (iii),
but in that case the flame ought to extinguish right upon
entering the steady regime, that is, a few tube diameters
above the ignition point, in contradiction to the first part of
(i). The second observation of (i) is confusing on its own, as
the flame which is about to extinguish would rather be
expected to decelerate. Next, heat losses to the walls, which
are generally an important factor of flame extinction,
cannot drive the process under consideration because their
relative value diminishes as the tube diameter increases,
and so they would produce a trend opposite to (ii). In fact, it
is known that the heat losses are negligible for axisym-
metric flames propagating in tubes with diameter ≳2 cm.
Neither can extinction be effected by the flame stretch
[6,7]. In the case of methane-air flames, for instance, the
flame stretch increases the burning rate at the flame center
[9], thus leading to contradiction with (iv). This mechanism
is also unable to explain (ii), because it would produce
opposite trends in mixtures with light and heavy deficient
components (such as lean methane-air and propane-air
mixtures, respectively), contrary to what is observed.
The extinction problem will be resolved below using the

recently developed on-shell flame description [10,11]; the
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intricacy of properties (i)–(iv) will be shown to be due to a
rather nontrivial structure of the spectrum of flame propa-
gation regimes under strong gravity.
It is quite clear that such a qualitative feature as the

extinction mechanism is common for two- and three-
dimensional flames. We therefore consider the mathemati-
cally simpler two-dimensional configuration, wherein the
flame propagates in an initially quiescent gaseous mixture
filling a vertical channel of width equal to the tube
diameter; see Fig. 1. Although flame extinction is in itself
an unsteady phenomenon, the experimental evidence stated
in (i) suggests that the conditions for its occurrence can be
inferred from the properties of the steady regime. We
therefore choose the reference frame attached to the steady
flame, with the origin at its tip, denoting x the horizonal
coordinate and y the coordinate directed downward along
the channel centerline. Lengths will be measured in units of
the channel half-width, d=2, whereas the gas velocity
components ðw; uÞ, in units of the planar flame speed
relative to fresh gas Uf. As the latter is much smaller than
the sound speed, the gas flow can be treated as incom-
pressible. Also, since the heat losses are not important for
the studied phenomenon, the gas density can be assumed
constant both upstream and downstream of the flame front,
θ denoting the density ratio. Then the gas-velocity dis-
tributions along the flame front, considered as a gas
dynamic discontinuity at y ¼ fðxÞ, satisfy the following
complex integro-differential equation [10], which is an
exact consequence of the fundamental gas dynamic equa-
tions for ideal flow:

2ω0
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Here, ω ¼ uþ iw is the complex velocity, ½ω� ¼ ωþ − ω−
its jump across the front, prime denotes x differentiation,
the subscript − (þ) restriction to the front of a function
defined upstream (downstream) of the front, e.g.,
w−ðxÞ ¼ w(x; fðxÞ − 0), N ¼
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gas velocity, σ ¼ ∂u=∂x − ∂w=∂y the vorticity, and,
finally, the Ĥ operator is defined on continuous functions
aðxÞ with zero mean across the channel as
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where the slash denotes the principal value of the integral.
Equation (1) is to be complemented by the evolution
equation, which defines the local burning rate. In terms
of the fresh gas velocity at the front, it reads

u− − f0w− ¼ N − LðvτÞ0; ð2Þ

where vτ ¼ ðw− þ f0u−Þ=N is the tangential to the front
component of the gas velocity. The last term on the right-
hand side of Eq. (2) describes the stretch effect, L denoting
the Markstein length. Effects due to the front curvature can
be safely omitted in the case under consideration, because
the radius of the flame front curvature is much larger than
the front thickness. Calculations show that for methane-air
flames in the standard flammability tube, for instance, the
relative value of the curvature contribution is less than 1%.
In its exact form, the system of Eqs. (1) and (2) is very

complicated. Fortunately, it highly simplifies for flames
with elongated fronts; such are the limit flames according to
the experiment. Transformations quite similar to those
performed in Ref. [11] for flames in horizontal channels
yield two real equations that can be conveniently written
taking f as an independent variable:
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where g is the gravity acceleration, α≡ θ − 1, and we
consider the right half of the channel, x > 0. These
ordinary differential equations are to be integrated together
with Eq. (2) under the initial conditions [11]

u−ð0Þ ¼ U;
du−ð0Þ
df

¼ α

2
; ð5Þ

x

y

( ( ), )x Uη

transition   domain 

stream-  
    line 

g

flame  
front 

( , ( ))fη η

 u(x,U)
burnt  
gas 

FIG. 1. Schematics of upward flame propagation in the case
g ≫ 1. Vertical arrows attached to the lower boundary (dashed
line) of the transition domain y ∈ ð0; UÞ depict the burnt gas
velocity profile generated by the flame under strong gravity.
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where U is the flame propagation speed in the labora-
tory frame.
Numerical scrutiny of the system shows that there are

two families of solutions corresponding to two disjoint
continua of U’s, just as for horizontal flame propagation.
As in the latter case, solutions corresponding to the lower
(higher) U will be called type I (type II) flames. Physical
solutions are identified as those satisfying

Z
1

0

dηNu(xðηÞ;U)¼ u21þU2

2
þαg

θ

Z
1

0

dη½fðηÞ−U�þα;

where (xðηÞ; U) is the intersection of the line y ¼ U with
the streamline that crosses the front at (η; fðηÞ), Fig. 1, u1
the fresh gas velocity at the front end point ð1; UÞ, and

u(xðηÞ; U) ¼ fθu21 − αu2−ðηÞ þ 2αg½fðηÞ −U�g1=2 ð6Þ

the burnt gas velocity at the lower boundary of the
transition domain. This condition expresses conservation
of the flow momentum through the transition domain.
An important and quite unexpected feature revealed by

the numerical analysis is that in the region of parameters
θ; Uf;L typical of limit flames, type I solutions come in
pairs having close U’s. Thus, for a flame with θ ¼ 4.7,
Uf ¼ 6.57 cm=s, and L ¼ −0.62 mm in the standard
flammability tube, the two eigenvalues are 3.38 and
3.75. There is also one type II solution which, however,
has a too high speed U ¼ 21.4 to be relevant to the
inflammability issue; if stable, it can presumably be
realized by means of a sufficiently strong ignition source.
For brevity, type I solutions with the lower (higher) speed
will be referred to as type Ia (type Ib).
The following circumstance is the key to explaining the

phenomenon of flame extinction. In the absence of gravity,
the gas flow induced by the flame is normally such that the
combustion products leaving the transition domain move
faster near the channel centerline than near the walls. This
is because, under the given overall pressure drop through
the transition domain, the velocity gain is larger for smaller
gas density, so that the gas elements burned near the flame
leading edge are accelerated stronger than those traversing
this domain in its upstream part. The effect of gravity [the
term 2αg½fðηÞ −U� in Eq. (6)] is opposite: the gas elements
flowing closer to the centerline are decelerated more
strongly. Numerical integration of the above system shows
that near the inflammability limits, the latter effect pre-
dominates over the former: under strong gravity (g ≫ 1),
the function u(xðηÞ; U)≡ uðηÞ turns out to increase with η;
see Fig. 2. Numerical analysis reveals, furthermore, that
type Ib solutions are singular at sufficiently small Uf (that
is, sufficiently large g). Namely, as the normal flame speed
decreases to some critical Uf (dependent on θ), uðηÞ
vanishes at the channel centerline (η ¼ 0). For still smaller
Uf, the root η0 of the function uðηÞ shifts from the

centerline towards the wall, while uðηÞ becomes formally
imaginary at η < η0; that is, the steady regime of the flame
propagation ceases to exist. Nullification of the gas velocity
over a finite region behind the flame means physically that
the burnt gas stops to flow out of the corresponding region
of the flame front. This is, of course, impossible in a truly
steady regime with a finite burning rate, but this also means
that if, for some reason, a flame configuration is instantly
formed with the gas velocity distribution along the front
and the front shape characteristic of a supercritical type Ib
solution, it will not exist longer than the transit time of
burnt gas from the front to the region of vanishing velocity.
In other words, the pressure distribution in this case is such
that the gas burning near the channel centerline is strongly
pushed upwards downstream of the front. One possible
outcome of this situation is a continued essentially
unsteady flame propagation, the other possible outcome
is its extinction.
Figure 3 is a phase diagram representing critical con-

ditions in the Uf − θ plane for different d and L. Stable
(subcritical) type Ib regimes belong to the region on the
right of the critical curve with the given d;L. The values of
Uf;L for near-limit flames are not easy to determine
accurately, but quite remarkably, the propagation speed
of type Ib flames turns out to change very little along the
critical curves when expressed in cm/s. In the case of
d ¼ 5.1 cm and L ¼ −0.62 mm, for example, U belongs
to the interval 24.65� 0.1 cm=s as θ varies from 4 to 5, and
Uf, respectively, from 6.3 to 5.3 cm=s, whereas a threefold
reduction of L gives rise to only a 5% change in U.
The whole picture of partial flame propagation can now

be described as follows. Ignition by means of a weak

FIG. 2 (color online). Burnt gas velocity distributions at the
lower boundary of the transition domain for a type I flame in
strong gravity (solid line, g ¼ 51), and a flame anchored in a fast
stream (dashed line, g ¼ 0). Inset: The corresponding front
shapes. d ¼ 5.1 cm, θ ¼ 4, L ¼ −0.1.
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energy source results in a steady flame with the lowest
propagation speed, that is, a type Ia flame. The flame
travels as such for some distance, but sooner or later it goes
over to the faster type Ib regime. (Numerical analysis shows
that under the critical conditions, the bulk viscous forces
alone are incapable of transforming the burnt gas flow into
the state of thermodynamic equilibrium—a homogeneous
flow. The type Ia flame thus turns out to be metastable: it
acquires a burnt gas “tail” in a state of incomplete
equilibrium, of length ≫ d equal to the distance at which
the boundary layer thickness becomes ∼d.) If the latter is
subcritical, the flame continues to propagate with a slightly
increased speed, which is thus the flame speed that will be
measured in a sufficiently long tube. On the other hand, if
the flame is supercritical, then as was already mentioned,
flame extinction following a short transient is one of the
two possibilities for flame evolution after the loss of
stationarity. It is to be expected for flames that are less
energetic (leaner), hence, less resistant to the flow pertur-
bation taking place near the flame center. Since the critical
curves in Fig. 3 shift to the leaner side as the tube diameter
decreases, this outcome is favored in sufficiently narrow
tubes, and as the experiments show, it is actually observed
in tubes with d≲ 10 cm. In wider tubes, on the other hand,
the flame might continue to propagate, but in an essentially
unsteady regime, e.g., break into cells.
Characteristics (i)–(iv) of the observed flame behavior

are readily understood in this picture. Figure 3

demonstrates that the critical normal flame speed increases
with the tube diameter; that is, the inflammability range
narrows in wider tubes, in agreement with the observation
(ii). The existence of the type Ia regime under critical
conditions makes possible comparatively long steady flame
propagation before extinction [the first part of (i)], whereas
transition to the slightly faster short-lived type Ib flame
configuration accounts for the rest of (i). It was already
discussed how specifics of the type Ib solution explain the
fact that extinction begins at the flame center [the last
observation in (iv)]. Turning finally to (iii), it should now be
clear that the same property of type Ib solutions establishes
a direct link between limit flames and bubbles: the flow
stoppage developing from the flame center towards the
walls makes the two structures alike. Together with the fact
already mentioned that the flame propagation speed
changes very little along the critical curves, this fully
accounts for (iii). A quantitative comparison of the theory
with experiment is given in Table I.
Regarding the similarity of limit flames with bubbles, its

transitory nature should be emphasized. Although the burnt
gas slow-down takes place in both Ia and Ib regimes, the
gas velocity in type Ia solutions remains large compared to
θUf everywhere in the channel cross section at y ¼ U, so
that no analogy with bubbles exists. This analogy emerges
only at the latest stage of flame evolution following
transition to a critical type Ib regime, when the burnt
gas stops to flow along the centerline, resulting in the local
flame extinction which then rapidly spreads out along the
front. In other words, a steady flame never behaves like a
bubble, but so does the hot postflame structure, that is the
type Ib flame remnant.
The fact that the bubble analogy holds only under the

critical conditions has another interesting implication. The
bubble speed is known to scale with g; d as U ∼

ffiffiffiffiffi
gd

p
. At

the same time, it is not difficult to see that g cannot be
eliminated from Eqs. (3) and (4) by rescaling u− →

ffiffiffi
g

p
u−,

f0 →
ffiffiffi
g

p
f0. This means that the dependence of U on g is

more complicated in general. Thus, the scaling U ∼
ffiffiffiffiffi
gd

p
holds only in the critical solutions, and as the numerical
analysis shows, it does so only approximately.
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FIG. 3 (color online). Critical conditions for flame extinction in
tubes of diameters 5.1 and 9.5 cm. Solid lines correspond to
L ¼ −0.62 mm, as given in Ref. [9] for methane-air flame with
the equivalence ratio 0.55. The dotted line is the phase locus of
lean methane-air flames, drawn using the same source. Also
shown are the critical curves for significantly different L (dashed
lines). The numbers near the lines are moduli of the respective
dimensionless Markstein lengths.

TABLE I. Methane-air flames in the lean extinction limit in
tubes of two different diameters. θ and Uf correspond to
intersections of the critical curves in Fig. 3 with the dotted line.
Uexp is the measured flame propagation speed [4], UIa and UIb its
values as given by the type Ia and type Ib solutions. Experimental
accuracy is 5%–7%; the error of calculations is about 10%.

d (cm) θ Uf (cm/s) Uexp (cm/s) UIa (cm/s) UIb (cm/s)

5.1 4.7 6.57 23.5 22.2 24.6
9.5 4.8 8.60 33.1 30.2 33.1
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