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Complete determination of the polarization state of light requires at least four distinct projective
measurements of the associated Stokes vector. Stability of state reconstruction, however, hinges on the
condition number κ of the corresponding instrument matrix. Optimization of redundant measurement
frames with an arbitrary number of analysis states, m, is considered in this Letter in the sense of
minimization of κ. The minimum achievable κ is analytically found and shown to be independent of m,
except for m ¼ 5 where this minimum is unachievable. Distribution of the optimal analysis states over the
Poincaré sphere is found to be described by spherical 2 designs, including the Platonic solids as special
cases. Higher order polarization properties also play a key role in nonlinear, stochastic, and quantum
processes. Optimal measurement schemes for nonlinear measurands of degree t are hence also considered
and found to correspond to spherical 2t designs, thereby constituting a generalization of the concept of
mutually unbiased bases.
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Measurement of the polarization of light is a common
problem in many fields of physics including quantum
information, astronomy, quantitative biology, and single
molecule orientational imaging [1–4]. Typically, determi-
nation of the polarization state of light, as parameterized by
a 4 × 1 Stokes vector, S, follows by making projective
measurements onto a set of known analysis states, with
complete state reconstruction requiring a minimum of four
distinct measurements [5]. Arguably the simplest so-called
complete polarimeter is that which comprises of linear
polarizers, oriented at 0°, 45°, and 90° to some reference
axis, and a circular polarizer. By virtue of the linear nature
of the measurement process, the intensities transmitted
through each polarization state analyzer (PSA), denoted by
D, can be related to the incident Stokes vector via D ¼ AS,
whereA is known as the instrument matrix (in this example
D is 4 × 1 and A is 4 × 4 in dimension). Although
intuitively simple to understand and easy to implement,
this polarimeter performs suboptimally. Much effort has
been invested over the years to optimize the geometry of
polarimeters using metrics such as the total variance on the
inferred Stokes vector [6,7], information content [8–11],
the determinant of the instrument matrix [12–14], and
signal to noise ratio [15]. Perhaps most popular, however, is
the condition number, κ, of the instrument matrix [13–20]
which describes the stability of the polarization inference
problem regardless of the reconstruction algorithm and
bounds the extent to which relative measurement errors are
amplified during state reconstruction. Smaller condition
numbers imply more robust measurements. Use of a
measurement set of greater than four analysis states,
however, is known to mitigate the effects of noise
[8,20,21]. Nevertheless, only limited consideration has

been given to optimization of these systems. Drawing
from results in discrete computational geometry, linear
algebra, and state tomography this work hence considers
the optimization of such measurement schemes in the sense
of minimization of κ and discusses the associated geometric
interpretation. It is established analytically that the mini-
mum condition number is

ffiffiffiffiffi
20

p
independent of the number

of analysis states. Formal equivalence between minimiza-
tion of κ, maximization of the determinant of the associated
Gram matrix, and minimization of the equally weighted
variance is established. Optimality constraints are further
derived and used to construct some illustrative optimal
measurement sets. More specifically, it is found that the
distribution of optimal analysis states over the Poincaré
sphere is intimately related to spherical 2 designs.
Accordingly, in contrast to previous reports, optimal
measurements are shown not to necessarily correspond
to inscribed polyhedra of maximal volume.
Going beyond linear reconstruction of the Stokes vector,

measurements of more complex functions of the Stokes
vector, DðSÞ, are made in a number of applications.
Nonlinear light scattering and material characterization,
for example, gives rise to intensities which depend on
products of Stokes parameters [22,23]. Furthermore, ran-
dom media and rough surfaces can be studied through the
changes in the statistical properties of the polarization of
light induced upon transmission or reflection [24–26]. Full
characterization, however, requires determination of the
underlying probability distribution function, or equiva-
lently all higher order statistical moments of the Stokes
parameters. Optimal analysis states for such higher order
problems are also considered in this Letter and their
relationship with spherical t designs established.
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Importantly, although the language of classical polarimetry
will be used throughout, it should be noted that the results
given are equally applicable in the quantum regime for
states of a given number of photons. For example, knowl-
edge of higher order moments of the Stokes operators can
give insight into hidden “quantum” polarization in a
classically unpolarized state [27,28].
The action of a PSA on incident light of arbitrary

polarization, can be considered as a projective measure-
ment, whereby the output light has polarization matching
the nominal analysis state of the PSA (denoted A ¼
ð1; A1; A2; A3ÞT=2 with

P
3
k¼1 A

2
k ¼ 1) and intensity of

AT · S, where A has been normalized to ensure the
PSA is passive [9]. Each row of the instrument matrix
associated with m ≥ 4 different measurements is given by
Aj (j ¼ 1; 2;…; m) and A thus has dimension m × 4. The
corresponding vector of measured intensities, D, is hence
m × 1. Geometrically, each Aj can be considered as
defining a point on the surface of the Poincaré sphere
through the reduced vector aj ¼ ðAj1; Aj2; Aj3ÞT, such that
A defines the vertices of a polyhedron inscribed within the
unit sphere. Moreover, the set of vectors fajg constitutes a
measurement frame [15].
The condition number of the instrument matrix is

explicitly defined as κ ¼ ∥A∥∥Aþ∥, where Aþ denotes
the generalized inverse of A and ∥ � � � ∥ denotes the matrix
norm (taken as the Hilbert-Schmidt norm throughout this
work). Noting that the normalization imposed on the rows
of A requires AT

j ·Aj ¼ 1=2, it follows that

∥A∥2 ¼ tr½ATA� ¼ m=2: ð1Þ
For any given experimental setup ∥A∥ is thus constant.
Accordingly, minimization of the condition number is
equivalent to minimization of ∥Aþ∥2, an alternative figure

of merit known as the equally weighted variance (EWV)
[6,20]. The EWV quantifies the noise amplification in the
reconstructed Stokes vectors assuming a least norm
reconstruction and equal magnitude errors on each meas-
urement [6]. Similarly to above ∥Aþ∥2 ¼ tr½ðAþÞTAþ� ¼
tr½B−1�, where B ¼ ATA is a 4 × 4 matrix and B−1 denotes
its inverse. The inverse of B exists if aj are not all co-planar
and moreover can be written in the form B−1 ¼ adj½B�=jBj
where j � � � j and adj½� � �� denote the determinant and adjunct
of a matrix respectively. The condition number (κ > 0) can
thus be expressed as

κ2 ¼ tr½B�tr½B−1� ¼ 1

2

m
jBj tr

�
djBj
dB

�
¼ m

2

X4
i¼1

dln jBj
dBii

; ð2Þ

where Jacobi’s formula has been used [29] and Bij is the
ði; jÞth element of B. Upon differentiation of Eq. (2),
application of the product rule, and back substitution, it can
be shown that 2d ln κ ¼ −d ln jBj. Minimization of the
condition number of the instrument matrix is hence also
equivalent to maximization of the determinant of B.
Geometrically, it is interesting to note that jBj represents
the volume squared of a 4-parallelotope in Rm. For the
special case of m ¼ 4, maximization of jBj is equivalent to
maximizing the volume of the tetrahedron whose vertices in
R3 are defined by aj [see Fig. 1(a)] as has been previously
reported [16,17].
Hadamard’s inequality [29] states that the determinant of

B is upper bounded by the product of its diagonal elements.
The maximum determinant is thus obtained when B is
diagonal whereby the diagonal elements also correspond to
the eigenvalues βl (l ¼ 1;…; 4). Explicitly B can be
expressed in the form B ¼ P

m
j¼1 AjAT

j , whereby it follows
by inspection that B11 ¼ β1 ¼ m=4. Furthermore

FIG. 1 (color online). (a)–(e) Optimal measurement frames form ¼ 4, 6, 8, 12, and 20 defining the Platonic polyhedra inscribed in the
Poincaré sphere. Corresponding analysis states lie on the family of cones shown. (f)–(k) Example optimal measurement frames and
associated non-Platonic polyhedra for m ¼ 6, 8, 9, 7, and 11.
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maximization of jBj is subject to the constraint tr½B� ¼ m=2
[c.f. Eq. (1)]. Use of the method of Lagrange multipliers
then yields β1=3 ¼ β2 ¼ β3 ¼ β4 ¼ m=12; i.e., the con-
dition number of A is minimized when

B ¼ m
12

0
BBB@

3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð3Þ

Substitution of Eq. (3) into Eq. (2) gives
κ ¼ ffiffiffiffiffi

20
p

≈ 4.47214. The condition number of an opti-
mized polarimeter is hence independent of the number of
analysis states m. It also follows that jBj ¼ m4=6912 and
the EWV ¼ 40=m. The fall off in the EWV with an
increasing number of measurements reflects the noise
reduction arising from greater measurement redundancy.
Generalization of the above to the problem of

reconstruction of an N ≥ 3 dimensional vector
SN ¼ ðS0; S1;…; SN−1ÞT , for which S20 ≥

P
N−1
j¼1 S2j , using

m ≥ N projective measurements onto analysis states of the
form AN ¼ ð1; A1;…; AN−1ÞT=2 can also be easily per-
formed. Consideration of the N ¼ 3 (i.e., reduced dimen-
sionality) case is applicable to linear polarimetry for
example, whereas higher dimensional generalizations are
relevant to polarimetry of three-dimensional fields,
whereby Stokes vectors become 9 × 1 in size [26,30].
Following the steps given above in the N-dimensional case
it is found that jBj is maximized when B is diagonal with
nonzero elements of β1 ¼ m=4 and βl ¼ β1=ðN − 1Þ for
l ≠ 1. In turn it follows that jBj ¼ ðm=4ÞNðN − 1Þ1−N ,
κ2 ¼ 2N2 − 4N þ 4 and the EWV ¼ 2κ2=m.
While the above treatment has considered the minimum

achievable condition number and EWV, the optimal meas-
urement frame has not yet been determined. To this end,
Eq. (3) must be invoked which upon generalization implies
the set of polynomial constraints

Xm
j¼1

aj ¼ 0 and
Xm
j¼1

ajaTj ¼ m
N − 1

IN−1; ð4Þ

where IN is the N × N identity matrix. A measurement
frame is optimal if and only if Eq. (4) is satisfied. When
N ¼ 3 it can be shown [31] that the optimal measurement
frame corresponds to aj defining a regular polygon
inscribed in the unit circle. Incidentally, the regular
inscribed polygons have the maximum area of all inscribed
polygons. For the N ¼ 4 case (which is exclusively
considered henceforth), it is found that Eq. (4) is satisfied
if the set of vectors fajg, or equivalently the vertices of the
underlying polyhedron, constitute a spherical 2 design in
R3 and are thereby closely related to mutually unbiased
bases [32]. Proof of this result follows from the definition
of spherical t designs as a collection of m points on the

surface of the unit sphere inR3 for which the (normalized)
integral of any polynomial, gðSÞ, of degree t or less is equal
to the average taken over the m points [33,34]. Use of the
polynomial functions g ¼ Sj and SjSk (j and k ¼ 1, 2, 3) in
this definition yields Eq. (4). It is also worthwhile noting
that a spherical t design is also a t − 1 design [33].
Numerical codes can be used for determination of

spherical t designs in general [35]; however, in view of
the symmetry of the N ¼ 3 solution, an analogous sym-
metry in the N ¼ 4 case is expected and can be used to
guide the construction of some simple 2 designs.
Specifically, letting m ¼ rs, and adopting the initial ansatz
aj ¼ ðsin θq cos½ϕp þ Φq�; sin θq sin½ϕp þ Φq�; cos θqÞT
for j ¼ 1;…; m, p ¼ 1;…; r, q ¼ 1;…; s, where
ϕp ¼ 2πp=r, Eq. (4) reduces to

Xs

q¼1

cos θq ¼ 0 and
Xs

q¼1

cos2θq ¼
s
3
: ð5Þ

In general, the solution to Eq. (5), and hence the choice of
optimal measurement frame, is not unique (even allowing
for the intrinsic rotational freedom). Nevertheless, a num-
ber of solutions can be found as is now illustrated.
Even m: For even m a simple optimal frame follows by

taking s ¼ 2 whereby Eq. (5) is trivially satisfied when
cos θ1 ¼ − cos θ2 ¼ 1=

ffiffiffi
3

p
. Without loss of generality Φ1

can also be set to zero. If Φ2 ¼ 0 it follows that, depending
on the relative sign of sin θ1 and sin θ2, optimal frames
possessing either an inversion or mirror symmetry can be
generated. In both cases, however, the vectors aj lie on two
cones with the apex at the origin and apex angle 2θq (see
e.g., Figs. 1(b), 1(c), 1(f) and 1(g) for m ¼ 6 and 8).
Geometrically, taking Φ2 ≠ 0 corresponds to a rotation of
the measurement states on the lower cone relative to those
on the upper cone as depicted in Figs. 1(f) and 1(g).
Solutions describing the regular tetrahedron
ðm; r; sÞ ¼ ð4; 2; 2Þ, octahedron (6,3,2), and cube (8,4,2)
can be generated in this manner [see Figs. 1(a)–1(c)].
Going further, a measurement frame containing m

analysis states can be partitioned into M subsets of size
mi ¼ 2μi, where m ¼ 2

P
M
i¼1 μi ≡ 2μ. Optimal frames can

then be constructed (Φq ¼ 0 is assumed henceforth for
simplicity) by constraining the vectors of each subset to lie
on cones with coinciding axes, but with differing apex
angles. Explicitly it can then be shown that the apex angles
θi (i ¼ 1;…;M) of each cone are given by
sin2 θi ¼ 2μλi=ð3μiÞ, where

P
M
i¼1 λi ¼ 1 [31]. Note that

in the limiting case of θi → 0 (whereby necessarily μi ¼ 1),
the corresponding cone collapses to its axis [e.g., Fig. 1(d)].
Both the regular icosahedron and dodecahedron can hence
be constructed [Figs. 1(d) and 1(e)]. Possible optimal
measurement frames for the m ¼ 4, 6, 8, 12, and 20 cases
are thus defined by the vertices of the Platonic solids
inscribed in the Poincaré sphere, in agreement with the
numerical results of Ref. [20]. The inscribed polyhedra
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generated form ¼ 4, 6, and 12 correspond to the polyhedra
of maximal volume. In contrast, however, noting that
inscribed polyhedra of maximal volume are Euclidean
simplexes [36], i.e., each face is triangular, the cube and
dodecahedron do not have maximum volume in contrast to
the claim of [20]. Nonuniqueness of the solution to Eq. (4)
implies the associated polyhedra for arbitrarym are also not
of maximal volume in general.
Odd m: When m is a factorable odd integer the ansatz

used thus far is also capable of generating optimal
measurement frames. In Fig. 1(h), for example, a possible
optimal frame is shown for ðm; r; sÞ ¼ ð9; 3; 3Þ, with
cos θ2 ¼ 0 and cos θ1;3 ¼ �1=

ffiffiffi
2

p
. For prime m alternative

solutions must, however, be sought. It is well known that no
spherical 2 design, and hence no optimal frame, exists for
m ¼ 5 [34], as can be verified by calculation of the
Groebner basis [37] of the set of polynomial equations
given by Eqs. (4) and the constraints aTj · aj ¼ 1. Solutions
for larger prime m can nevertheless still be found. One
such solution set (also valid for factorable odd m) takes
the form aj ¼ ðsin θj cosϕj; sin θj sinϕj; cos θjÞ, where
ϕj ¼ 2πj=ðm − 1Þ, cos θj ¼ c1 for j ¼ 1; 3;…; m − 2,
cos θj ¼ c2 for j ¼ 2; 4;…; m − 1, cos θm ¼ 1 and ci ¼
½3� ð−1Þi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3mðm − 4Þp �=½3ð1 −mÞ� as follows from
Eq. (4). This solution is depicted in Figs. 1(i)–1(k) for
m ¼ 7, 9, and 11.
The underlying mathematical framework found above

hints at a potential extension of the optimization procedure
to higher order measurement problems. Consider, for
example, the measurement of a nonlinear function DðSÞ,
such as the generated intensity in an optical nonlinear
conversion problem. Letting PkðSÞ denote a complete basis
of polynomial functions, ordered by increasing polynomial
degree and indexed by k ¼ 0; 1;…;∞, the measurand can
be decomposed according to

DðSÞ ¼
X∞
k¼0

FkPkðSÞ ð6Þ

where Fk are the associated expansion coefficients which
are now the unknowns of interest. Pk are assumed to be
orthonormal over the Poincaré sphere. Practically, a finite
number of measurements, m, are made in directions fAjg
so as to sampleDðSÞ. Furthermore, the sum in Eq. (6) must
be truncated at a finite order K, such that Eq. (6) reduces to
D¼PF, where F ¼ ðF0; F1;…; FKÞT and ½P�jk ¼ PkðAjÞ.
In general, at least K þ 1 measurements are required for
complete determination of F. Optimality in this case
can again be quantified using the condition number
of P. Assuming the polynomials Pk satisfyP

K
k¼0 P

�
kðSÞPkðSÞ ¼ C, where C is a constant, a trace

constraint analogous to Eq. (1) follows. Noting P0ðSÞ is
also a constant, similar derivations to those above yield

κ2 ¼ C
P0

þ CK2

C − P2
0

; ð7Þ

where the corresponding optimal GrammatrixP†Pmust be
diagonal. The resulting constraints [c.f. Eq. (4)] are
satisfied if the analysis states constitute a spherical 2t
design, where t is the degree of the polynomial PK . Proof
follows in a similar fashion to above. As a concrete
example, if the polynomial functions Pk are taken as the
spherical harmonics Ylm [whereby the k index in Eq. (6)
denotes a suitable lexicographic ordering of the indices
ðl; mÞ] up to maximum degree l ¼ t, it follows that K ¼
ðtþ 1Þ2 and P0 ¼ 1=

ffiffiffiffiffiffi
4π

p
. Using the addition theoremP

l
m¼−l Y

�
lmYlm ¼ ð2lþ 1Þ=ð4πÞ the minimum achievable

condition number is found to be κ ¼ ðtþ 1Þ2. Importantly,
it should be noted that spherical 2t designs do not
necessarily exist for arbitrary m [35]. In general it is
therefore found that estimation of higher order properties
not only becomes more ill conditioned, but also requires a
larger number of measurements to be made. Use of optimal
measurement sets is therefore critical to reconstruction
quality in this case. In this sense the Platonic solids perform
well as measurement frames since they constitute higher
order t designs; e.g., a regular dodecahedron is a spherical 5
design, while possessing a relatively small number of
analysis states.
In summary, optimal measurement frames for the

reconstruction of the Stokes vector S of polarized light
have been analytically and geometrically investigated. This
analysis can also be applied to the input polarization states
in Mueller matrix polarimetry [38]. Equivalence of opti-
mization based on the EWV, the condition number κ of the
associated instrument matrix, and the determinant of its
Gram matrix was established. Constraints on the optimal
analysis states were derived and found to be satisfied by
states defining spherical 2 designs. It followed that min-
imization of κ does not necessarily correspond to maxi-
mization of the volume of the corresponding inscribed
polyhedron. Finally, results were extended to consider
optimal frames when the measurand is a polynomial
function of S of degree t. In this case optimal frames
correspond to sets of analysis states constituting spherical
2t designs. This work provides the means for optimal
polarization state tomography and hence paves the way for
the practical study of nonlinear or stochastic properties of
polarization, which are of interest in both biological and
physical contexts. Within the former, for example, non-
linear polarization studies can provide insight into cellular
and molecular structure [23,39], while the latter can enable
study of fundamental quantum polarization properties
[28,40,41]. Finally, these results also present interesting
opportunities for establishing optimal schemes for quantum
tomography of two level systems due to the underlying
geometric parallels with the Bloch sphere [42].
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