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Reducing work fluctuation and dissipation in heat engines or, more generally, information heat engines
that perform feedback control, is vital to maximize their efficiency. The same problem arises when we
attempt to maximize the efficiency of a given thermodynamic task that undergoes nonequilibrium processes
for arbitrary initial and final states. We find that the most general trade-off relation between work
fluctuation and dissipation applicable to arbitrary nonequilibrium processes is bounded from below by the
information distance characterizing how far the system is from thermal equilibrium. The minimum amount
of dissipation is found to be given in terms of the relative entropy and the Renyi divergence, both of which
quantify the information distance between the state of the system and the canonical distribution. We give an
explicit protocol that achieves the fundamental lower bound of the trade-off relation.
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Recent developments in nonequilibrium statistical
mechanics enable us to assign physical meanings to non-
equilibrium entropies such as Shannon and von Neumann
entropies in certain situations [1–3]. The information-
theoretic analysis of thermodynamics starting from and
ending at arbitrary nonequilibrium states has been carried
out, as in encoding and erasure of information [3–6]. An
important subset of this category is the information heat
engines [1,7–15], since themeasurement projects the state of
the system into the postmeasurement state, which is usually
out of equilibrium. They play a pivotal role in controlling
small thermodynamic systems that operate at the level of
thermodynamic fluctuations. Viewing biological processes
as information processing requires us to quantify thermo-
dynamic costs of biological sensory adaptation in terms of
information-theoretic quantities [16]. Suppressing both
work fluctuation and dissipation as much as possible is
vital to heat engines and thermodynamic tasks since reduc-
ing dissipation allows us to increase the efficiency and
reducing work fluctuation makes it possible to supply an
exact amount of work needed to complete a given task or to
extract a definite amount of work from the system.
Considerable effort has been devoted in the search for a

protocol that minimizes work fluctuation and dissipation
under nonequilibrium situations. Previous studies have
explored the regime around vanishing work fluctuation
by using techniques known as single-shot statistical
mechanics [17–21], and the regime around vanishing dis-
sipation on the basis of the second law of thermodynamics
[3,4]. However, as we prove in the present work, these two
aims (vanishing work fluctuation and vanishing dissipation)
are incompatible. We find the trade-off relation between
work fluctuation and dissipation with its fundamental lower
bound set by the information distance characterizing the
nonequilibriumness of the system. We also show that the
bounds on dissipation in the single-shot (vanishing work

fluctuation) and reversible (vanishing dissipation) regimes
can be smoothly connected via the relative entropy [22] and
the Renyi divergence [23], both of which quantify the
information distance between the nonequilibrium distribu-
tion and the canonical distribution. We apply the trade-off
relation to information heat engines, where the fundamental
lower bound of the trade-off relation is characterized by the
obtained information. Numerical simulations on an infor-
mation heat engine based on a single-electron box [14,15]
are performed to verify the trade-off relation. We propose a
method to construct explicit protocols that achieve the lower
bound of the trade-off relation.
Main results.—We define the extractable work from the

system as a change of the internal energy that is not
absorbed by the heat bath: W½Γ� ¼Eλ0ðxÞ−Eλ1ðyÞþQ½Γ�,
where Γ denotes the trajectory of the process, Q½Γ� is the
heat absorbed by the system, and Eλ0ðxÞ and Eλ1ðyÞ are the
initial and final energies of the eigenstates, respectively. For
nonequilibrium initial and final states, the maximum
extractable work from the system is quantified by the
nonequilibrium free-energy difference [1,3] −ΔF ðx; yÞ ¼
F λ0ðxÞ − F λ1ðyÞ, where F λ0ðxÞ ¼ Eλ0ðxÞ − β−1S½piniðxÞ�,
S½qðxÞ� ¼ − ln qðxÞ is the Shannon entropy, and β is the
inverse temperature of the heat bath. We define dissipation
as the difference between the maximum extractable work
and the actually extracted work:

σ½Γ� ¼ −β½W½Γ� þ ΔF ðx; yÞ�: ð1Þ

The first main result of our work is the trade-off relation
between work fluctuation and fluctuation in dissipation
(see the Supplemental Material [24] for the proof):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW2i− hWi2

q
þβ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ2i− hσi2

q
≥
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This result implies that the sum of the work fluctuation and
the fluctuation in dissipation is bounded from below by the
fluctuation of the nonequilibrium free-energy difference
ΔF [See Fig. 1(a)]. If the initial and final states are far from
equilibrium, the lower bound of Eq. (2) becomes very
large. The trade-off relation (2) indicates that work and
dissipation cannot simultaneously take definite values; if
we reduce work fluctuation, the fluctuation in entropy
production inevitably increases, and vice versa.
The second main result is the trade-off relation between

work fluctuation and dissipation. From Eq. (2), there is a
nontrivial relation between σ and W if hW2i − hWi2 ≤
hðΔF Þ2i − hΔF i2. Then, let

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW2i − hWi2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔF Þ2i − hΔF i2

p ; ð3Þ

where α ∈ ½0; 1�. In this case, dissipation and work satisfy
the following inequalities (see the Supplemental Material
[24] for the proof):

hσi ≥ ð1 − αÞ½ΔDαðpini∥pcan
λ0

Þ þ Δdαðpfin∥pcan
λ1

Þ�; ð4Þ

hWi ≤ −αhΔF i − ð1 − αÞ½fαðpfinÞ − F αðpiniÞ�: ð5Þ

Here, ΔDα ¼ D −Dα (Δdα ¼ dα −D) gives the distance
between the initial (final) distribution and the canonical
distribution, Dðpini∥pcan

λ0
Þ ¼ P

xpiniðxÞ ln½piniðxÞ=pcan
λ0

ðxÞ�
is the Kullback-Leibler divergence (relative entropy) [22],
and

Dαðpini∥pcan
λ0

Þ ¼ 1

α − 1
ln

�X
x

½piniðxÞ�α½pcan
λ0

ðxÞ�1−α
�

ð6Þ

is the Renyi divergence [23]. Here, dα is defined by

dαðpfin∥pcan
λ1

Þ ¼ 1

α − 1
ln

�X
y∈Y

½pfinðyÞ�α½pcan
λ1

ðyÞ�1−α
�
; ð7Þ

where the support Y is defined such that dα takes the
smallest value that satisfies

dαðpfin∥pcan
λ1

Þ ≥ D∞ðpfin∥pcan
λ1

Þ ¼ lnmax
y

pfinðyÞ
pcan
λ1

ðyÞ : ð8Þ

The lower bound of Eq. (4) is given by the black solid curve
in Fig. 1(b). The asymmetry between Dα and dα is due to
the absence of the time-reversed protocol of the thermal-
ization process as discussed later. In Eq. (5), hF λ0i ¼
β−1Dðpini∥pcan

λ0
Þ þ Feqðpcan

λ0
Þ is the averaged nonequili-

brium free energy and F αðpiniÞ ¼ β−1Dαðpini∥pcan
λ0

Þ þ
Feqðpcan

λ0
Þ is the α generalization of the free energy, where

we denote by FeqðqÞ the equilibrium free energy whose
corresponding canonical distribution is equal to the dis-
tribution q. We also define the free energy fαðpfinÞ ¼
β−1dαðpfin∥pcan

λ1
Þ þ Feqðpcan

λ1
Þ by using dα. We note that the

ordering of the Renyi divergence [32] D∞ ≥ D ≥ Dα for
1 ≥ α with Eq. (8) implies ΔDα ≥ 0 and Δdα ≥ 0.

(a) (b) (c)

FIG. 1 (color online). Trade-off relations. (a) Normalized standard deviation of dissipation σ versus that of work W. The solid line
shows the lower bound of the trade-off relation (2). (b) Average dissipation versus the standard deviation of work. The black solid curve
shows the lower bound of the trade-off relation (3) and (4) for arbitrary initial and final states. If dα takes the minimum value D∞, the
lower bound is given by the dashed curve. For a thermalized final state, Δdαðpfin∥pcan

λ1
Þ ¼ 0 and the lower bound is given by the green

solid curve. Each blue dot is obtained by a numerical simulation of a random quench of a five-level system followed by thermalization
and isothermal expansion (see the Supplemental Material [24] for details). (c) The abscissa shows the standard deviation of work
normalized by that of the fluctuation of the obtained information, and the ordinate shows the dissipation normalized by the mutual
information between the system and the measuring apparatus. The solid curve shows the lower bound of the trade-off relation (10) and
(12). Blue dots are obtained by a numerical simulation of a Szilard engine in a single-electron box [15] as illustrated in the inset (see the
Supplemental Material [24] for details). Here, n denotes the excess number of electrons in the quantum dot, m denotes the outcome of
the measurement of n, and ϵ is the measurement error rate, which is set to be ϵ ¼ 0.02 in the numerical simulation. The relevant two
states n ¼ 0 and n ¼ 1 are assumed to be degenerate and initially populated with equal probability. Depending on the outcome m of the
state measurement, the feedback control is performed by lowering the energy level of the m state relative to the other. Finally, the two
energy levels are relaxed to their initial (equal-energy) state through thermal contact with a heat bath.
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Explicit protocol and the trade-off relation.—For given
ðpini; Hλ0Þ and ðpfin; Hλ1Þ, we want to find a protocol that
connects them by reducing both work fluctuation and
dissipation as much as possible. Although a quasistatic
process makes both work fluctuation and dissipation vanish,
we cannot directly connect ðpini; Hλ0Þ → ðpfin; Hλ1Þ by the
quasistatic process alone because the initial and final
distributions are out of equilibrium. Instead, we prepare
two canonical distributions as auxiliary intermediate states,
and connect them by the quasistatic process. Then, we
connect ðpini; Hλ0Þwith one of the canonical distributions by
combining a quench process followed by thermalization,
and the other canonical distribution is connected with
ðpfin; Hλ1Þ by a thermal operation and a quench process.
The entire protocol is illustrated in Fig. 2, and as we show in
the Supplemental Material [24], this protocol is necessary
and sufficient to achieve the lower bound of Eqs. (2) and (4).
Now let us discuss the explicit protocol in more detail

and consider the physical meanings of the quantities that
appear in Eqs. (4) and (5). We change the initial distribution
to the canonical distribution e−βHαðpiniÞ=ZαðpiniÞ ≔
ðpiniÞαðpcan

λ0
Þ1−αeð1−αÞDαðpini∥pcan

λ0
Þ, which is an intermediate

distribution between the initial state and the canonical
distribution for the initial Hamiltonian. This is done
by quenching the Hamiltonian from Hλ0 to HαðpiniÞ
and extracting the work given by hWexti1 ¼
α½hF λ0i − FeqðpiniÞ�. Note that the maximum extractable
work from the initial state is quantified by the nonequili-
brium free energy hF λ0i. The unexpended free energy
ð1 − αÞhF λ0i is partly lost during the thermalization, and
the remaining free energy, which can be extracted by
the quasistatic process, is given by ð1 − αÞF αðpiniÞ,
as can be seen by noting the dissipated work due
to the measurement: hWdisi2¼ð1−αÞ½hF λ0i−F αðpiniÞ�.

This dissipation βhWdisi2 ¼ ð1 − αÞΔDαðpini∥pcan
λ0

Þ ¼
Dðpini∥e−βHαðpiniÞ=ZαðpiniÞÞ appears on the right-hand side
of Eq. (4), which gives the information distance between
the initial state and the canonical distribution, which
we connect during the thermalization process. Thus, the
right-hand side of Eq. (5) is composed of a part of the
nonequilibrium free energy αhF λ0i, which can be extracted
by the quench process and the free energy ð1 − αÞF αðpiniÞ,
which remains in the system after the thermalization.
The rest of the protocol is the transformation of the

canonical distribution to the final state. Because we cannot
perform time reversal of thermalization, we invoke a
thermal operation [18] that transforms the state of the
system by exchanging energy with the heat bath. This
operation always changes the system closer to the thermal
equilibrium, and we need to prepare a distribution whose
“nonequilibriumness” is larger than that of the target final
state. For this purpose, we prepare a localized distribution

e−βH
Y
α ðpfinÞ=ZY

αðpfinÞ≔ðpfinÞαðpcan
λ1
Þ1−αeð1−αÞdαðpfin∥pcan

λ1
Þ, whose

support is restricted to Y. The term ð1 − αÞfαðpfinÞ is the
free energy that is needed to prepare this localized thermal
state and αhF λ1i is the free energy needed to quench the
Hamiltonian back to the final one [see Eq. (5) and Fig. 2].
The asymmetry between the transformation of a non-
equilibrium state into a thermalized state and its opposite
transformation (i.e., from a thermalized state to a non-
equilibrium state) gives rise to the difference between Dα

and dα [see Eq. (4)].
As shown in Ref. [18], the minimum work cost to create

pfin from a canonical distribution via the thermal operation
with the fixed Hamiltonian HαðpfinÞ is given by
β−1D∞ðpfin∥e−βHαðpfinÞ=ZαðpfinÞÞ, with the help of a two-
level auxiliary system. If we can introduce this auxiliary
system, the dissipated work for the thermal operation is

FIG. 2 (color online). Protocol achieving the lower bounds of the trade-off relations. We denote by ðp;HÞ a pair of the probability
distribution p and the Hamiltonian H. The transformation ðpini; Hλ0Þ → ðpfin; Hλ1Þ that achieves minimum work fluctuation and
dissipation is illustrated, where a change in the Hamiltonian is shown in a vertical direction and a change in the state is shown in a
horizontal direction. The explicit protocol consists of five steps, where the extractable work hWexti and the dissipated work hWdisi ≔
β−1hσi for each process are shown. Here,HαðpfinÞ is a Hamiltonian that satisfies e−βHαðpfinÞ=ZαðpfinÞ ≔ ðpfinÞαðpcan

λ1
Þ1−αeð1−αÞDαðpfin∥pcan

λ1
Þ.
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found to be hWdisi4 ¼ ð1 − αÞ½F∞ðpfinÞ − hF λ1i�, and the
equality condition in Eq. (8) is achieved (see the
Supplemental Material [24] for details). This condition is
also achieved if the energy level of the system is dense. The
lower bound of Eq. (4) with dα ¼ D∞ is shown by the
dashed curve in Fig. 1(b). Note that the solid curve jumps
(i.e., the support Y changes) wherever the line touches the
dashed curve because we take discrete energy levels.
Comparison with previous studies.—For α ¼ 1, Eqs. (4)

and (5) are equivalent to the second law of thermodynamics
for arbitrary initial and final states: hσi≥0 and
hWi ≤ −hΔF i. Since the canonical distribution
e−βHαðpiniÞ=ZαðpiniÞ is equal to the initial state for α ¼ 1
(the same relation holds for the final state), we do not need
thermalization and thermal operations to achieve the lower
bound of the trade-off relations. Then, dissipation does not
occur and we can extract the maximum average work
from the system (see also Fig. 2). For α ¼ 0, Eq. (5) takes
the form hWi ≤ F 0ðpiniÞ − f0ðpfinÞ, which reproduces
the single-shot results given in Refs. [17,18]. Here,
F 0ðpiniÞ ¼ −β−1 ln½Px∈X expð−βEλ0ðxÞÞ� is equal to the
equilibrium local free energy whose support X is the same
as the initial state. By raising the initially unoccupied
energy levels, this amount of free energy remains after
thermalization.
For a general α, the trade-off relation gives the minimum

amount of work fluctuation and dissipation in the inter-
mediate regime. Comparing Eqs. (3) and (5), we find that
the distribution of the extractable work is broadened
(meaning larger work fluctuation) if we want to increase
the average value of work, and vice versa. Thus, the trade-
off relation gives the best combinations of the “quality of
work” and the average amount of extractable work. For
equilibrium initial and final states, we can directly connect
them by the quasistatic process and the lower bound of the
trade-off relation (solid curve) in Fig. 1(b) shrinks to a
single point at the origin; i.e., work fluctuation and
dissipation can both vanish.
Applications to information heat engines.—The infor-

mation heat engines utilize the information obtained by the
measurement to extract work from the system. For sim-
plicity, we consider a classical system and assume that the
premeasurement state pSðxÞ is given by a canonical
distribution. Then, dissipation is defined as the difference
between the maximum amount of extractable work [13]
−ΔFS þ β−1ISM and the actually extracted work WS½Γ�:

σ½Γ� ¼ −βðWS½Γ� þ ΔFSÞ þ ISMðx; aÞ ð9Þ
and ISMðx; aÞ ¼ lnpSMðx; aÞ − ln½pSðxÞpMðaÞ� is the
(unaveraged) classical mutual information between the
system (S) and the measurement apparatus (M) [22].
Here, pSMðx; aÞ is the joint probability distribution of
SM for the postmeasurement state, pSðxÞ¼P

ap
SMðx;aÞ,

and pMðaÞ ¼ P
xp

SMðx; aÞ. The trade-off relation (4) takes
the following form [see also Fig. 1(c)]:

hσi ≥ ð1 − αÞðISM − ISMα Þ; ð10Þ

βhWi ≤ αhISMi þ ð1 − αÞISMα − βΔFS; ð11Þ

where α is defined by

α ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW2i − hWi2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðISMÞ2i − hISMi2

p ð12Þ

and ISMα ¼ ½1=ðα−1Þ� lnPx;a½pSMðx;aÞ�α½pSðxÞpMðaÞ�1−α
is the Renyi generalization of the mutual information. If we
extract the maximum amount of work from the system for
each measurement outcome, we can extract WS½Γ� ¼
−ΔFS þ β−1Iðx; aÞ from the system, with finite work
fluctuations. On the other hand, if we discard the meas-
urement outcome, we can extract a definite amount of work
WS½Γ� ¼ −ΔFS from the system with large dissipation.
This means that Eqs. (10) and (12) show a trade-off relation
between work fluctuation and dissipation due to the
fluctuation in the obtained information.
Possible experimental test of the trade-off relations.—

The proposed trade-off relations can be tested by using a
single-electron box, which was used to realize a Szilard
engine [14,15]. Suppose that we prepare degenerate states
of a two-level system and perform a measurement to
distinguish the state of the system, which is initially
distributed with equal probabilities Pðn¼ 0Þ¼Pðn¼ 1Þ¼
1=2, where n labels the state of the system. Let the
measurement error rate be ϵ and the joint probability
distribution of the system being n and the measurement
outcome being m be given by Pðn;mÞ ¼ ð1 − ϵÞ=2 for
m ¼ n and Pðn;mÞ ¼ ϵ=2 form ≠ n. A feedback control is
implemented by lowering the energy level of the state
n ¼ m and letting the energy level return to the degeneracy
point [see the inset of Fig. 1(c)]. By tracking the state
of the system during this feedback, we can measure the
extracted work for each run of the experiment, and
calculate work fluctuation and dissipation. If we change
the feedback protocol, e.g., by changing the degree of the
energy-level shift, we obtain a different experimental data
set of work fluctuation and dissipation. By plotting
β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW2i − hWi2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðISMÞ2i − hISMi2

p
against hσi=hISMi

as shown in Fig. 1(c), we can test the trade-off relation
between work fluctuation and dissipation in information
heat engines. The results of numerical simulations of a
Szilard engine in a single-electron box using a master
equation described in Ref. [15] are shown as dots in
Fig. 1(c).
Summary.—We have found a set of fundamental trade-off

relations between work fluctuation and dissipation for non-
equilibrium initial and final states. We can reproduce single-
shot results in the limit of vanishing work fluctuation and
thermodynamically reversible results (the lower bound of the
conventional second law) in the limit of vanishing dissipa-
tion. These two limits are smoothly connected and the
minimum dissipation along this boundary is characterized
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by the information distance between the state of the system
and the canonical distribution. This result gives the funda-
mental bound on both work fluctuation and dissipation
starting from and/or ending at nonequilibrium states. An
application of the trade-off relation to information heat
engines is discussed, including numerical simulations that
vindicate the obtained trade-off relation.
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