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We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode
Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We
also show how such a formula can be written in terms of symplectic invariants and used to derive closed
forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information,
and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable
protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses,
and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with
arbitrary multimode Gaussian resources.
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The quantification of the similarity between two quan-
tum states is a crucial issue in quantum information theory
[1–4] and, more generally, in the entire field of quantum
physics [5]. Among the various notions, that of quantum
fidelity [6–8] is perhaps the most well known for its use as a
quantifier of performance in a variety of quantum proto-
cols. Quantum fidelity is the standard tool for assessing the
success of quantum teleportation [9–13], where an
unknown state is destroyed in one location and recon-
structed in another (see Ref. [14] for a recent review). In
quantum cloning [15–19], where an unknown state is
transformed into two or more (imperfect) clones, quantum
fidelity is the basic tool for quantifying the performance of
a quantum cloning machine. Quantum fidelity plays a
central role in quantum metrology [20,21], where the goal
is to find the optimal strategy for estimating a classical
parameter encoded in a quantum state. Similarly, it is
important in quantum hypothesis testing [22–24], where
the aim is to optimize the discrimination of quantum
hypotheses (states or channels).
An important setting for all of the above tasks is that of

continuous-variable systems [3,4], which are quantum
systems with infinite-dimensional Hilbert spaces, such as
the bosonic modes of the electromagnetic field, described
by position and momentum quadrature operators. For these
systems, the quantum states with a Gaussian Wigner
function, so-called Gaussian states [3], are the most typical
in theoretical studies and experimental implementations, so
quantifying their similarity is of paramount importance.
The derivation of a simple formula for the quantum fidelity
between two arbitrary bosonic Gaussian states is a long-
standing open problem with a number of partial solutions
accumulated over the years. We currently know the
solutions for one mode [25–28] and two modes [29–31].
A simple formula for multimode Gaussian states is only
known in specific cases, namely, when one of the two states
is pure [29,32], or for two thermal states [33].

Here, we solve this long-standing problem by deriving a
computable formula for the quantum fidelity between two
arbitrary multimode Gaussian states, which is simply
expressed in terms of their first- and second-order statistical
moments. A key step for this derivation relies in proving an
exponential Gibbs-like representation for the Gaussian
states, extending a result known in the fermionic case
[34]. This representation allows us to simplify many
calculations involving products and powers of Gaussian
states. We also provide a recipe for expressing the quantum
fidelity in terms of symplectic invariants, showing specific
examples with one, two, and three modes. The new formula
for the fidelity allows us to easily derive the Bures metric
for Gaussian states, therefore generalizing quantum met-
rology to multimode Gaussian resources. Similarly, we
discuss how quantum hypothesis testing can be extended
beyond two-mode Gaussian states.
Preliminary tools.—Consider n bosonic modes

described by quadrature operators Q ¼ ðx1;…; xn;
p1;…; pnÞT , satisfying the canonical commutation rela-
tions [35]

½Qk;Ql� ¼ iΩkl; Ω≔
�

0 1

−1 0

�
⊗ 1; ð1Þ

where 1 is the n × n identity matrix. The coordinate
transformations Q0 ¼ SQ which preserve the above com-
mutation relations form the symplectic group, i.e., the
group of real matrices such that SΩST ¼ Ω [36].
Let us denote by ρ an unnormalized density operator of

the n bosonic modes. Its normalized version is here denoted
by ρ̂ ¼ ρ=Zρ, with Zρ ¼ Trρ being the normalization
factor. For a Gaussian state [3], the density operator ρ̂
has a one-to-one correspondence with the first- and second-
order statistical moments of the state. These are the mean
value u≔hQiρ̂ ¼ TrðQρ̂Þ ∈ R2n and the covariance matrix
(CM) V, with generic element
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Vkl ¼
1

2
hfQk − uk;Ql − ulgiρ̂; ð2Þ

where f; g is the anticommutator. Equivalently, we may use
the following modified version of the CM:

W≔− 2ViΩ: ð3Þ
According to Williamson’s theorem, there exists a

symplectic matrix S such that [3]

V ¼ SðD⊕DÞST;D ¼ diagðv1;…; vnÞ; ð4Þ
where the symplectic eigenvalues satisfy vk ≥ 1=2.
Correspondingly, the matrix W transforms as SWS−1 and
its standard eigenvalues are �wk, where wk ¼ 2vk ≥ 1.
Note that standard matrix functions do not preserve the
symplectic structure of Eq. (4). In view of this, given any
real function f∶R → R, we define the symplectic action
[32] f� on V as

f�ðVÞ ¼ S½fðDÞ⊕fðDÞ�ST;
fðDÞ ¼ diag½fðv1Þ;…; fðvnÞ�: ð5Þ

The symplectic action is a basic tool which enables us to
extend relations from diagonal to completely arbitrary CMs.
Furthermore, we prove in the Supplemental Material [37]
that this operation can be reduced to a standard matrix
function when f is an odd function, in which case we can
write f�ðVÞ ¼ fðViΩÞiΩ. Remarkably, this reduction
allows us to remove any residual symplectic matrix or
symplectic decomposition [3] from our final formulas.
As a first main result, we show in the Supplemental

Material [37] that an arbitrary multimode Gaussian state,
with mean u and CM V, can be written in the following
Gibbs-exponential form:

ρ ¼ exp

�
−
1

2
ðQ − uÞTGðQ − uÞ

�
; ð6Þ

with normalization factor

Zρ ¼ det

�
V þ iΩ

2

�
1=2

: ð7Þ

In Eq. (6) the Gibbs matrixG is simply related to the CM by

G ¼ 2iΩcoth−1ð2ViΩÞ; V ¼ 1

2
coth

�
iΩG
2

�
iΩ: ð8Þ

Note that this is the simplest exponential form derived so
far for Gaussian states. It is directly expressed in terms of
the first- and second-order moments of the quadratures,
without the need of performing any symplectic decom-
position. Proof sketch.—We first note that Eq. (6) is true for
thermal states (diagonal CM D⊕D), for which G ¼
gðDÞ⊕gðDÞ and gðvÞ ¼ 2 coth−1ð2vÞ. Then, by imposing
that the exponential of Eq. (6) is invariant under coordinate
transformations, we find that V and ΩGΩ transform in the
same way under symplectic transformations. This property

allows us to apply the symplectic action g� and write
ΩGΩ ¼ −g�ðVÞ. Finally, using the fact that g is an odd
function, we derive the matrix relations in Eq. (8). See the
Supplemental Material [37] for a detailed proof. ▪
Using Eq. (3) we may also write the equivalent relations

eiΩG ¼ W − 1
W þ 1

; W ¼ 1þ eiΩG

1 − eiΩG
; ð9Þ

where we use the notation A=B≔AB−1 when A and B
commute. Note that, although the matrix G is singular for
pure states (so one has to deal carefully with this limit), the
introduction of the representation in Eq. (6) significantly
simplifies the calculations, and all of the final formulas are
valid in general, i.e., for both mixed and pure states.
Fidelity for multimode Gaussian states.—The quantum

fidelity between two arbitrary quantum states, ρ̂1 ¼ ρ1=Zρ1
and ρ̂2 ¼ ρ2=Zρ2 , is given by

F ðρ̂1; ρ̂2Þ≔Trð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂1

p
ρ̂2

ffiffiffiffiffi
ρ̂1

pq
Þ ¼ Z ffiffiffiffiffi

ρtot
pffiffiffiffiffiffiffiffiffiffiffiffiffi
Zρ1Zρ2

p ; ð10Þ

where ρtot≔
ffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

p
. Here, we consider two arbitrary

multimode Gaussian states: ρ̂1, with mean u1 and CM V1,
and ρ̂2, with mean u2 and CM V2. Their Gibbs matrices G1

and G2 are readily obtained from Eq. (8). The advantage of
using the Gibbs-exponential representation of Eq. (6) is
twofold in our calculations: First, it makes the evaluation of
the operator square root in Eq. (10) straightforward;
second, it allows us to use the algebra of quadratic
operators [40] to find ρtot in closed form.
Thus, we are able to show in the Supplemental Material

[37] that the quantum fidelity between two arbitrary
Gaussian states can be directly expressed in terms of
δu≔u2 − u1 and their CMs, V1 and V2, according to the
decomposition

F ðρ̂1; ρ̂2Þ¼F 0ðV1;V2Þexp
�
−
1

4
δTuðV1þV2Þ−1δu

�
; ð11Þ

where F 0ðV1; V2Þ has a closed analytical form in terms of
V1 and V2. Having a simple and handy expression for
F 0ðV1; V2Þ has been a major open problem for many years,
with partial solutions only known for one- and two-mode
cases, or in the very specific case of thermal states. Here,
we show that, for two arbitrary Gaussian states, the term
F 0ðV1; V2Þ can be easily computed from one of the
auxiliary matrices,

Vaux≔ΩTðV1 þ V2Þ−1
�
Ω
4
þ V2ΩV1

�
; ð12Þ

Waux≔− 2VauxiΩ ¼ −ðW1 þW2Þ−1ð1þW2W1Þ: ð13Þ
More precisely, we find [37]

F 0ðV1; V2Þ ¼
Ftotffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðV1 þ V2Þ4
p ; ð14Þ
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F4
tot ¼ det

�
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðVauxΩÞ−2

4

r
þ 1

�
Vaux

�
ð15Þ

¼ det
h� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −W−2
aux

q
þ 1

�
WauxiΩ

i
: ð16Þ

Proof sketch.—The proof can be broken down into four
main steps. (i) First of all, by exploiting the closed algebra
spanned by quadratic operators in Q, we show that ρtot ¼ffiffiffiffiffi
ρ1

p
ρ2

ffiffiffiffiffi
ρ1

p
has the Gibbs form ρtot ¼ exp½−ðQ − utotÞT×

GtotðQ − utotÞ=2þ Ktot�, where Gtot satisfies
e−iΩGtot ¼ e−iΩG1=2e−iΩG2e−iΩG1=2, while utot and Ktot
depend on G1, G2, u1, and u2. (ii) For k ¼ 1, 2, let us
call ρGk

the Gaussian state ρk with the same Gibbs matrix
Gk but zero mean. We easily find that Zρk ¼ ZρGk

. As a

consequence, Eq. (10) becomes F ¼ F 0eKtot=2, where
F 0 ¼ Z ffiffiffiffiffiffiffi

ρGtot
p ðZρG1

ZρG2
Þ−1=2 and ρGtot

is the zero-mean

version of ρtot. After simple algebra, we derive
Ktot ¼ log½Zρ1ρ2=ZρG1ρG2

� ¼ −δTuðV1 þ V2Þ−1δu=2, yield-

ing the decomposition in Eq. (11). (iii) The further
decomposition in Eq. (14) follows from the application
of Eq. (7) to F 0. This providesF 0¼½detðV1þV2Þ�−1=4Ftot,
where F4

tot ¼ det ½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −W−2

tot

p
þ 1ÞWtotiΩ� and Wtot ¼

−2V totiΩ is the modified CM of ρGtot
. This CM is still

rather complicated. (iv) The most challenging part is indeed
the simplification of the residual term Ftot. Here, we first
simplify Wtot by means of algebraic manipulations (e.g.,
using the Woodbury identity); then we compute the similar
matrix Waux ¼ MWtotM−1 for a suitable invertible M,
obtaining Eq. (13). The auxiliary matrix Waux can now
replaceWtot inF4

tot since the determinant of a matrix function
is invariant under similarity transformations. The final result
of Eq. (16) is also confirmed by an alternate approach, where
we simplify F4

tot using the Gibbs matrices. Finally, we
explicitly check to see that all of the quantities are well
defined in the singular limit where the symplectic spectra
contain vacuum contributions, as is the case for pure states.
See the Supplemental Material [37] for a detailed proof. ▪
Note that the asymmetry of Vaux and Waux upon

exchanging the two states is only apparent and comes
from the apparent asymmetry in the definition of Eq. (10).
One can check that the eigenvalues of Vaux and Waux, and
thus the determinants in Eqs. (15) and (16), are invariant
under exchange.
We remark that the formula of Eq. (11) is valid for

arbitrary (generally mixed) multimode Gaussian states with
arbitrary first- and second-order moments, and it does not
involve any symplectic decomposition of the CMs. In the
specific case where one of the states is pure (say, ρ1), we
have V1 ¼ 1=2, which implies that Vaux ¼ 1=2 and
Ftot ¼ 1, therefore recovering the result of Ref. [32]
(and, in different notation, Ref. [41]).

Fidelity in terms of symplectic invariants.—The fidelity
can be expressed in terms of symplectic invariants associated
with the second-order moments of the Gaussian states.
Consider the notation with the W matrices, so that Ftot is
given by Eq. (16). The standard eigenvalues of Waux are
�waux

k ,wherewaux
k ≥ 1 [42].Asaconsequence,wemaywrite

Ftot ¼
Yn
k¼1

½waux
k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwaux

k Þ2 − 1

q
�1=2: ð17Þ

Thus, theproblemreduces to finding theeigenvaluesofWaux.
For this, let us consider the characteristic polynomial

χðλÞ ¼ det ðλ1 −WauxÞ; ð18Þ

which is clearly a symplectic invariant since Waux trans-
forms as SWauxS−1 under symplectic transformations. Using
the identity det eX ¼ eTrX and theCayley-Hamilton theorem
[43], we may write χðλÞ as a polynomial function of

I2k ¼ TrðW2k
auxÞ; for k ¼ 1;…; n; ð19Þ

which are also symplectic invariants with Ik > Ij for k > j.
Thus, for nmodes, we can compute the n invariants I2k and
subsequently solve the polynomial equation χðλÞ ¼ 0,
whose roots are the eigenvalues waux

k to be used in Eq. (17).
Note that the invariants I2k can be connected with other

invariants. For instance, one can easily check to see that

χð0Þ ¼ ð−1Þn Γ
Δ
; χð1Þ ¼ ð−1Þn Λ

Δ
; ð20Þ

where Δ≔ detðV1 þ V2Þ, Γ≔22n detðΩV1ΩV2 − 1=4Þ, and
Λ≔22n detðV1 þ iΩ=2Þ detðV2 þ iΩ=2Þ ð21Þ

are the invariants considered by Ref. [29]. Using Eq. (20),
one can easily express I2 and I4 in terms of Γ, Λ, and Δ.
Examples.—Let us consider some examples with the

n ¼ 1, 2, and 3 modes. For single-mode Gaussian states,
we derive χðλÞ ¼ λ2 − I2=2, so that waux ¼ ffiffiffiffiffiffiffiffiffi

I2=2
p

.
Equivalently, we may compute I2=2 ¼ 1þ Λ=Δ so that
we retrieve the known result [26–28]

F 2
0ðV1; V2Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δþ Λ

p
−

ffiffiffiffi
Λ

p : ð22Þ

For two-mode Gaussian states, we derive χðλÞ ¼
ðI22 − 2I4 − 4I2λ2 þ 8λ4Þ=8 with the solutions

waux
� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4I4 − I22

qr
: ð23Þ

Once plugged into Eq. (17), we have the fidelity in terms of
I2 and I4. The latter invariants can then be expressed in terms
of Γ=Δ and Λ=Δ, so that we retrieve the known result [29]
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F 2
0ðV1; V2Þ ¼

1ffiffiffi
Γ

p þ ffiffiffiffi
Λ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

Γ
p þ ffiffiffiffi

Λ
p Þ2 − Δ

q : ð24Þ

For three-mode Gaussian states, the characteristic poly-
nomial may be written as χ ¼ t3 þ ptþ q, where

t ¼ λ2 − I2=6; p ¼ I22
24

−
I4
4
;

q ¼ −
I32
108

þ I2I4
12

−
I6
6
: ð25Þ

The solutions of the characteristic equation χ ¼ 0 are real
[37] and are given by

waux
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
6
þ 2

ffiffiffiffiffiffiffiffi
−
p
3

r
cos

�
θ − 2πðk − 1Þ

3

�s
; ð26Þ

where θ≔ arccos ½3 ffiffiffi
3

p
qð2p ffiffiffiffiffiffiffi−pp Þ−1� and k ¼ 1, 2, 3 (in

particular, note that waux
k ¼ ffiffiffiffiffiffiffiffiffi

I2=6
p

for p ¼ 0). To the best
of our knowledge, Eqs. (25) and (26), together with
Eqs. (11) and (17), provide the first expression for the
quantum fidelity between two arbitrary three-mode
Gaussian states. Such an expression can be readily
exploited to compute the fidelity of recovery [44] for three
bosonic modes.
Implications: Geometry of Gaussian states.—Once the

quantum fidelity is expressed in terms of the first two
statistical moments, we can easily compute the Bures
distance between two arbitrary multimode Gaussian states,
ρ̂1 and ρ̂2, which is given by

DBðρ̂1; ρ̂2Þ ¼ 2½1 − F ðρ̂1; ρ̂2Þ�: ð27Þ
From this expression we can derive the Bures metric by
expanding the fidelity. Consider two infinitesimally close
Gaussian states ρ̂1 ¼ ρ̂, with statistical moments u and V,
and ρ̂2 ¼ ρ̂þ dρ̂, with statistical moments uþ du and
V þ dV. The Bures metric is computed by using
Eq. (11) in Eq. (27) and expanding to the second order
in du and dV. The zeroth and first-order terms clearly
vanish since F has a maximum for dρ̂ → 0, where F ¼ 1.
Thus, we find [37]

ds2 ¼ 2½1 − F ðρ̂; ρ̂þ dρ̂Þ� ¼ duTV−1du
4

þ δ

8
; ð28Þ

where δ≔4Tr½dVð4LV þ LΩÞ−1dV�, LAX≔AXA, and the
inverse of the superoperator 4LV þ LΩ refers to the
pseudoinverse [43]. Note that a result equivalent to
Eq. (28) has been derived in Ref. [45] using a different
method based on the computation of the symmetric
logarithmic derivative (SLD). Our explicit expressions in
Eqs. (11)–(16) allow us to avoid the evaluation of the SLD,
which is notably difficult, and to obtain Eq. (28) directly
from second-order perturbation theory.
Numerically, the easiest way of evaluating the inverse of

the superoperator in δ is using the W matrices and

performing the calculations in the basis in which W is
diagonal. Indeed, in this basis where W ¼ diagðwiÞ, one
finds

δ ¼
X
ij

dWijdWji

wiwj − 1
; ð29Þ

and the sum is taken over the elements such that wiwj ≠ 1.
For pure states, we simply have δpure ¼ TrðV−1dVV−1dVÞ.
Implications: Multimode quantum metrology.—Let us

consider a real parameter θ which is encoded in a multi-
mode Gaussian state ρ̂θ. To estimate θ with high precision,
it is necessary to distinguish the two infinitesimally close
states ρ̂θ and ρ̂θþdθ for an infinitesimal change dθ. Assume
that N copies of the state ρ̂θ are available to an observer,
who performs N independent measurements to obtain an
unbiased estimator ~θ for parameter θ. Then, the mean-
square error affecting the parameter estimation
VarðθÞ≔hð~θ − θÞ2i satisfies the quantum Cramer-Rao
(QCR) bound VarðθÞ ≥ ½NHðθÞ�−1, where HðθÞ is the
quantum Fisher information (QFI) [20]. The latter can
be computed from the fidelity as

HðθÞ ¼ 8½1 − F ðρ̂θ; ρ̂θþdθÞ�
dθ2

: ð30Þ

Thus, for any parametrization of the Gaussian states, we
can easily compute the fidelity F ðρ̂θ; ρ̂θþdθÞ using Eq. (11)
and, therefore, the QFI in Eq. (30).
More generally, suppose that the Gaussian state is labeled

by a vectorial parameter with m real components, i.e.,
θ ¼ fθig for i ¼ 1;…; m. In this case, the performance of
the parameter estimation is expressed by the classical
covariance matrix CovijðθÞ≔h~θiθji − h~θiihθji, which sat-
isfies the matrix version of the QCR bound [21,46,47]
CovðθÞ ≥ ½NHðθÞ�−1. Here, the QFI is a matrix with ele-
mentsHijðθÞ, which can be evaluated from theBuresmetric.
In fact, for any parametrization, we may write Eq. (28) as
ds2 ¼ gijðθÞdθidθj and show that HijðθÞ ¼ 4gijðθÞ.
Implications: Multimode quantum hypothesis testing.—

An efficient computation of the quantum fidelity is impor-
tant to extend binary quantum hypothesis testing [22–24] to
considering multimode Gaussian states. In turn, this would
allow one to extend a variety of quantum sensing protocols,
such as quantum illumination [48–50] and quantum read-
ing [51–56].
Consider N copies of two multimode Gaussian states,

ρ̂⊗N
1 and ρ̂⊗N

2 , with the same a priori probability. The
minimum error probability perrðNÞ in their statistical
discrimination is provided by the Helstrom bound [24],
which is typically hard to compute for mixed states. For this
reason, one resorts to other computable bounds, such as the
quantum Chernoff bound [57–59] or fidelity-based bounds
[59–61]. Thanks to our result, the latter are now the
simplest to compute.
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For any number of copies N, we may write

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½F ðρ̂1; ρ̂2Þ�2N

p
2

≤ perrðNÞ ≤ ½F ðρ̂1; ρ̂2Þ�N
2

: ð31Þ

In particular, the lower bound in Eq. (31) is the tightest
known.Note that Eq. (31) can be derived by using the known
result for a single copy (N ¼ 1) [60] and then applying the
multiplicative property of the fidelity under tensor products
of density operators, so that F ðρ̂⊗N

1 ; ρ̂⊗N
2 Þ ¼ F ðρ̂1; ρ̂2ÞN .

The computation of the quantum fidelity is also impor-
tant for asymmetric quantum hypothesis testing where the
two quantum hypotheses have unbalanced Bayesian costs
[62]. In this context, the quantum fidelity can be used to
estimate the quantum Hoeffding bound [63] which quan-
tifies the optimal error exponent associated with the rate of
false negatives.
Conclusions.—In this Letter we have solved a long-

standing open problem in continuous-variable quantum
information by deriving a simple computable formula for
the quantum fidelity between two arbitrary multimode
Gaussian states. Our main formula is expressed in terms
of the statistical moments of the Gaussian states, but
another formulation is also given in terms of suitable
symplectic invariants. By using our formula, one can
extend the study of quantum teleportation, cloning, quan-
tum metrology, and hypothesis testing well beyond the
standard case of two-mode Gaussian states to consider
multimode Gaussian resources, with unexplored implica-
tions for all of these basic quantum information protocols.
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