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We report on the observation of antiferromagnetic correlations of ultracold fermions in a variety of
optical lattice geometries that are well described by the Hubbard model, including dimers, 1D chains,
ladders, isolated and coupled honeycomb planes, as well as square and cubic lattices. The dependence of
the strength of spin correlations on the specific geometry is experimentally studied by measuring the
correlations along different lattice tunneling links, where a redistribution of correlations between the
different lattice links is observed. By measuring the correlations in a crossover between distinct geometries,
we demonstrate an effective reduction of the dimensionality for our atom numbers and temperatures. We
also investigate the formation and redistribution time of spin correlations by dynamically changing the
lattice geometry and studying the time evolution of the system. Time scales ranging from a sudden quench
of the lattice geometry to an adiabatic evolution are probed.
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Understanding the mechanisms underlying quantum
magnetism is among the most thought-provoking chal-
lenges of quantum many-body physics. At the center of
these efforts is the interplay between the emergence of
magnetic correlations and the underlying lattice geometry
[1]. Extensive research has been carried out using different
materials, as well as theoretical and numerical methods,
which enhanced the understanding and also triggered
unforeseen questions [2,3]. A new development is the
study of quantum magnetism using ultracold fermionic
atoms in optical lattices. In these systems, magnetic order-
ing arises from a quantum-mechanical exchange coupling
between the constituent atoms with different spins.
This approach offers a uniquely direct link between
experimental observations and theoretical models, a key
element for quantum simulation [4,5]. It also promises
unprecedented dynamic control over lattice parameters and
geometry [6–10], which can give an entirely new perspec-
tive on out-of-equilibrium properties of quantum spin
systems [11]. Indeed, antiferromagnetic spin correlations
were recently observed in the Hubbard regime of an optical
lattice, first in an anisotropic [12] and later in an isotropic
simple cubic geometry [13]. In both situations, highly
sophisticated computational methods were required for
comparison between experiment and theory [13–16].
Along a different line, making use of ultracold bosons,
progress was made in simulating static and dynamic
properties of classical and quantum mechanical spin
models in theoretically more tractable regimes [17–23].
In this Letter, we explore the emergence of antiferro-

magnetic spin correlations in different lattice geometries of
varying dimensionality, also including crossover configu-
rations between different geometries. The dynamic control
over the geometries enables us to study the formation

dynamics and the redistribution time of spin correlations,
where the explored time scales range from the sudden to the
adiabatic regime. The starting point of the experiment is a
harmonically confined ultracold Fermi gas of 40K in a
balanced two-component spin mixture with repulsive
interactions [12]. The atoms are prepared in the two
magnetic sublevels mF ¼ −9=2, −7=2 of the F ¼ 9=2
hyperfine manifold, and the s-wave scattering length is
tuned between 136.4ð5Þ − 149.0ð3Þa0 via the Feshbach
resonance located at 202.1 G (a0 denotes the Bohr radius).
For all experiments, the atom number is 140ð30Þ × 103

with 10% systematic error, and the temperature is
0.09ð1ÞTF, where TF is the Fermi temperature. After the
preparation, the atoms are loaded into the lowest band of a
tunable-geometry optical lattice using an S-shaped ramp
lasting 100 ms. This ramp is nearly adiabatic, and the
entropy it creates does not significantly depend on the
chosen geometry [24]. The lattice consists of several
retroreflected interfering and noninterfering laser beams
of wavelength λ ¼ 1064 nm, which gives access to a broad
variety of lattice geometries [8,24]. Additionally, in all
measurements, a 3D harmonic confinement is present in the
experiment with a geometric mean trapping frequency of
ω̄=2π ¼ 57ð1Þ Hz. This causes a locally varying lattice
filling over the size of the cloud, with its largest value in the
center of the trap.
Our experiments are well described by the Fermi-
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with tunneling tij between nearest neighbors hiji and
repulsive on-site interaction U. Here, ĉ†iσ and ĉiσ denote
the fermionic creation and annihilation operators for the
two spin states σ ∈ f↑;↓g, the density operator is denoted
by n̂iσ ¼ ĉ†iσ ĉiσ and Vi is the trap energy. The different
lattice geometries are realized experimentally by independ-
ently adjusting the specific values of tij for each of the six
nearest neighbor links per lattice site of an underlying
simple cubic lattice. Their strength is controlled via the
power of the lattice laser beams [24]. In all measurements
presented in the following, we adjust the scattering length
with a Feshbach resonance such that U=h ¼ 0.87ð2Þ kHz
and set the total bandwidth for noninteracting particles to
W=h ¼ 2.6ð1Þ kHz [27].
After loading the atoms into the desired lattice geometry,

we measure the trap-averaged magnetic spin correlations
emerging on neighboring sites in the low-temperature
many-body state of the quantum gas. Our detection is
similar to the method used in previous experiments [12]
and is presented in full detail in the Supplemental Material
[24]. The spin correlations are measured on every second
lattice link, between nearest neighbors i and iþ 1, and
along the transverse spin axis

Ci;iþ1 ¼ −hŜxi Ŝxiþ1i − hŜyi Ŝyiþ1i: ð2Þ

Here, Ŝx;y;zi denote the standard spin vector operators for a
spin-1=2 system on site i, and h…i denotes the trap
average. For SU(2) symmetry, Ci;iþ1 is equal to
−2hŜzi Ŝziþ1i. The detection protocol allows us to measure
both antiferromagnetic and ferromagnetic configurations,
corresponding to positive and negative values of Ci;iþ1,
respectively.
In a first measurement, we investigate the strength of

spin correlations in several different lattice geometries.
Starting from an underlying simple cubic lattice, the
tunneling is enhanced along Z nearest neighbor links
and takes the value ts, whereas the tunneling along the
remaining 6 − Z links is ts=5. The geometries realized in
this manner are, sorted by increasing number of strong
nearest neighbor links Z: dimerized, 1D chains, honey-
comb (HC) planes, ladders, square, coupled honeycomb
planes, and cubic (see Fig. 1). We measure the correlations
along the strong tunneling links. As shown in Fig. 1, the
strength of the correlations depends on the specific geom-
etry with values ranging between 0.084(1) and 0.010(1) for
the trap averaged value, and is generally smaller for a larger
number of strong tunneling links. In the isotropic cubic
lattice as well, which has the largest value of Z (Z ¼ 6), we
detect antiferromagnetic correlations in the system [13].
The observed dependence of the spin correlator on Z can

be understood with two simple arguments in a homo-
geneous system. Owing to the isolated nature of the system,
the total entropy rather than the temperature is constant for
different Z. First, with a finite entropy, the presence of two

different energy scales associated with different tunnelings
directly affects the magnetic correlations and leads to a
redistribution of spin correlations between the strong and
the weak links. For a large number of weaker tunneling
links, more low-energy states are accessible. Thus, a finite
entropy mainly leads to thermal fluctuations within these
states, and the magnetic correlator on the strong links is
high. However, if the number of weak links decreases,
thermal fluctuations along the weak links alone are not
sufficient to account for the total entropy, and additional
thermal fluctuations are also distributed on the strong links,
therefore, reducing the strong link correlator. Second, even
at zero entropy, quantum fluctuations play a significant
role. In lower dimensions, this generally leads to enhanced
short-range spin correlations [29]. In both cases, the
correlator is expected to decrease as Z is increased. This
is in accordance with previous measurements in the specific
cases of dimerized lattices (Z ¼ 1) and 1D chains
(Z ¼ 2) [12,15].
While these two effects predict a dependence only on Z,

the lattice geometry itself (for the same value of Z) will also
affect the strength of the spin correlations, most importantly

FIG. 1 (color online). Experimental observation of the depend-
ence of antiferromagnetic correlations on lattice geometry. The
trap averaged correlator −hŜxi Ŝxiþ1i − hŜyi Ŝyiþ1i is measured along
the strong links for various lattice geometries, which differ in the
number of strong nearest neighbor links Z. Additionally, a
schematic view of the lattice geometries is shown, where the
strong tunneling links are indicated by a bar. For all data points,
the bandwidth W=h ¼ 2.6ð1Þ kHz and the on-site interaction
U=h ¼ 0.87ð2Þ kHz is constant. Error bars denote the standard
error of 50 measurements.
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at low temperatures. In fact, in the limit of vanishing
temperatures, the state of the system and its phase diagram
will be entirely determined by the interplay between
geometry and magnetic ordering. The different values
observed for the two Z ¼ 3 geometries (ladder and honey-
comb planes) might be due to a higher entropy in the ladder
geometry [24], or it could suggest that effects of the lattice
geometry are already starting to play a role at the temper-
atures reached in the experiment. An analysis of the relative
importance of these effects may be achieved by a detailed
experiment-theory comparison, which is beyond the scope
of this Letter.
In addition to the aforementioned contributions, the

underlying harmonic confinement also plays a central role
for the value of the trap-averaged correlator. Within the
local density approximation, both the chemical potential at
the center of the trap and the temperature are determined by
the total atom number and entropy. As the equation of state
of the system depends on the lattice geometry and Z, both
the density and entropy distribution change with the
geometry, which directly affects the magnetic correlator.
To further study the impact of geometry on magnetic

correlations, we measure their strength for a crossover
regime between two lattice geometries with different num-
bers of strong links Z. In the experiment, geometries with a
different Z can be smoothly connected by adjusting the
strength of the individual tunneling links [24]. We scan
between a square (Z ¼ 4) and1Dchain (Z ¼ 2) geometry by
choosing the strong-to-weak tunneling ratio ts=t in the range
1–5, while keeping the tunneling in the orthogonal direction
at ts=5, see Fig. 2(a). A second scan between a 1D chain and
dimerized (Z ¼ 1) geometry is shown in Fig. 2(b). We
measure spin correlations either along the strong or theweak
tunneling links. In both cases, correlations on each link start
from the same value. As ts=t is increased, the correlations
along the strong links are enhanced,whereas the correlations
along theweak links decrease. Interestingly, the correlations
change more rapidly with increasing ts=t for the scan in
Fig. 2(a) as compared to Fig. 2(b), which is a consequence of
the underlying lattice geometry. For the final configuration
ts=t ¼ 5, the correlations on the weak link have nearly
vanished, whereas the correlations on the strong links have
saturated at a high value. This indicates that the thermal
fluctuations occur predominantly on the weak links.
Consequently, the weaker couplings can be neglected in
this case, and the dimensionality of the lattice is effectively
reduced for our total entropy and atomnumber. Interestingly,
the reduction of the dimensionality occurs at different ratios
of ts=t, depending on which geometry is considered.
These measurements demonstrate that spin correlations

redistribute between the strong and weak links when
changing Z. Yet, this does not necessarily imply that
the sum of spin correlations is constant. We find the
sum of correlations to be approximately constant in the
scan of Fig. 2(a), whereas it increases significantly with

dimerization in the scan of Fig. 2(b). This observation
might be related to the opening of a finite energy gap in the
energy spectrum for a strongly dimerized lattice, which
causes entropy redistribution within the trapped system and
enhances the overall spin correlation strength [12].
The tunability of our lattice also allows us to exper-

imentally measure the time scales for the formation and
redistribution of spin correlations when dynamically
changing the lattice geometry. This is done by measuring
the strength of spin correlations when the lattice geometry
is changed on variable time scales. For simplicity, we start
with a ramp where the initial and final lattice geometry
are the same up to a rotation: starting from a 1D chain
geometry we ramp via a square lattice to a 1D chain lattice
again, but with strong tunneling along the perpendicular
direction. We always include an additional wait time before
the ramp such that the total time in the optical lattice is
constant, see Fig. 3(a). The spin correlations are measured
immediately after the ramp along the two different
directions.
The observed dependence of the spin correlations on the

total ramp time τ is shown in Fig. 3(a). For fast ramps,
τ < 1 ms, the spin correlations remain unchanged at the
values without ramping. Here, a nonequilibrium state is

FIG. 2 (color online). Spin correlations for a crossover between
two different lattice geometries. (a) Scan between a square
(Z ¼ 4) and a 1D chain (Z ¼ 2) geometry and (b) scan between
a 1D chain (Z ¼ 2) and a dimerized (Z ¼ 1) geometry. In both
cases, the strong to weak tunneling ratio ts=t varies between 1 and
5. Blue and red symbols denote the measured spin correlations
along the strong and weak links, respectively. Gray symbols show
their sum. The error bar on the tunneling ratio denotes the
uncertainty on the lattice parameters, while the data are the mean
� the standard error of at least 25 measurements.
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formed with several charge and spin excitations, which
decay when allowing for an additional wait time after the
ramp, thus, changing the detected value of spin correlations
[open symbols in plot Fig. 3(a)]. On intermediate ramp
times, τ ∼ 4 ms, the spin correlations change symmetrically
along the two directions. This time scale is comparable to
the underlying tunneling time between h=ts ¼ 2 ms and
h=t ¼ 10 ms during the ramp. For very slow ramp times,
we observe, within error bars, a 100% transfer of spin
correlations from the previously strong to the new strong
links. When waiting 100 ms in this case, the magnetic
correlations decrease (most likely due to underlying heating
of the gas) but agree with the value when loading directly
from the harmonic trap to the final lattice geometry and
waiting for the same total time. These observations are in
agreement with a fully adiabatic ramp to an equilibrated
final state for the slowest ramp times, as the initial and final
lattice geometries are the same with the same density and
entropy distributions.
The situation changes considerably for a ramp with

different initial and final lattice geometries. Here, we start
from a dimerized lattice with a ratio of ts=t ¼ 5 for adjacent
tunneling links and ramp to a 1D geometry without
dimerization. Immediately after the lattice ramp, we mea-
sure the spin correlations on the initially strong and weak
links along the 1D direction, see Fig. 3(b). As before, for
fast ramps, the spin correlations cannot redistribute and are
nearly unchanged as compared to the case without a ramp.
When adding an additional wait time after the fastest ramp,
the spin correlations change, signaling a decay of the

created excitations in this case. The behavior is different for
intermediate ramp times: while the correlations on the
initially strong links decrease very quickly, slower ramp
times τ ∼ 1 ms are necessary for the correlations on the
initially weak links to change. This may originate from
the difference in the overall tunneling time scale during the
ramp for the two links. For the slowest ramps, the
correlators along the original strong and weak link are
identical. With an additional wait time, they both decay to
the same value, again owing to heating. This indicates a
final state close to equilibrium. In contrast to the previous
measurement, the gap between the ground and excited
states closes during the ramp, since the singlet-triplet gap
has vanished in the nondimerized geometry. Yet, the
observed spin correlation value agrees with a reference
when loading directly into the final lattice geometry and
holding the remaining time. Consequently, ramp times
corresponding to a few tunneling times are already suffi-
cient to reach equilibrium.
In conclusion, we have observed antiferromagnetic

correlations in a variety of lattice geometries and studied
the redistribution of correlations between strong and weak
links. Extending our work to lower temperatures will allow
addressing open questions on the low-temperature phase
diagram of the Hubbard model in complex lattice geom-
etries. In this way, the nature of the ground state in a spin
ladder geometry with tunable couplings can be investigated
[2]. It may also be possible to study quantum criticality in
the vicinity of the phase transition from a semimetal to an
antiferromagnetic Mott insulator in the 2D honeycomb

FIG. 3 (color online). Dynamics of spin correlations. The lattice is ramped within a time τ (a) from a 1D chain geometry to the same
1D chain geometry rotated by 90° and (b) from a dimerized to 1D chain geometry [24]. Blue and red points denote the measured spin
correlations along the previously and new strong links. For all closed symbols, the correlations are measured immediately after the ramp,
whereas open symbols include an additional wait time of 50 ms. The gray solid lines indicate the reference value for the correlations in
the initial geometry without the lattice ramp, and the shading denotes the error on this value. Error bars are the standard error of at least
25 measurements.
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lattice [30]. In combination with recent efforts on creating
spin-dependent optical lattices with very low underlying
heating [31], the anisotropic XXZ Heisenberg model and
the Falikov-Kimball model could be realized and studied
experimentally with ultracold fermions [32]. Our results on
quantum spin dynamics demonstrate that ultracold fer-
mions in optical lattices are well suited to study open
questions in out-of-equilibrium many-body spin systems,
where theoretical methods become extraordinarily difficult
[33,34]. Furthermore, the observed rapid formation time
scales of spin correlations offer very promising perspec-
tives for the implementation of sophisticated entropy
redistribution schemes based on trap shaping and dynami-
cally changing lattice geometries, which are expected to
result in overall lower temperatures [35–37].
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