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We demonstrate that migration away from self-produced chemicals (chemorepulsion) generates a
generic route to clustering and pattern formation among self-propelled colloids. The clustering instability
can be caused either by anisotropic chemical production, or by a delayed orientational response to
changes of the chemical environment. In each case, chemorepulsion creates clusters of a self-limiting
area which grows linearly with self-propulsion speed. This agrees with recent observations of dynamic
clusters in Janus colloids (albeit not yet known to be chemorepulsive). More generally, our results could
inform design principles for the self-assembly of chemorepulsive synthetic swimmers and/or bacteria
into nonequilibrium patterns.
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Active systems, such as suspensions of autophoretic
colloidal swimmers, motile bacteria, or other self-propelled
particles, are far from equilibrium even in steady state due
to their continuous energy expenditure [1,2]. Unlike
isothermal Brownian colloids, motile particles can accu-
mulate in regions where they move more slowly. They also
slow down at high density, creating a positive feedback
loop that can lead ultimately to motility-induced phase
separation (MIPS) [3,4].
Experiments with artificial self-propelled colloids have

reported self-organized dynamic clustering, sometimes at
densities well below that expected to trigger MIPS [5,6].
These “living clusters” seem to reach a limiting size and do
not coarsen indefinitely: they show microphase separation
rather than macrophase separation as in MIPS. So far, the
underlying mechanism remains unclear.
In such experiments, motility is autophoretic: a chemi-

cal reaction is catalyzed on part of the colloid surface,
creating a gradient of reagent and/or product that drives
the particle forward by diffusiophoresis or a similar
mechanism [7–9]. The same gradients can then cause
chemically mediated long-range interactions between the
colloids, and can also cause rotational torques that bias
the swimming direction up or down the chemical gradient
(an effect known as chemotaxis) [10,11]. This fact has
suggested a parallel between the experiments in Ref. [5]
and the Keller-Segel (KS) model [12–14] for microorgan-
isms interacting via chemical signaling. This mapping,
which assumed that active colloids swim up chemical
gradients (the “chemoattractive” case), can explain clus-
tering, but leads to complete phase separation, rather than
a self-limiting cluster size. A combination of a passive
drift up the chemical gradient and self-propulsion down it
(“chemorepulsion”) might lead to finite size clusters [15];
however, at variance with experiments [5,16], these

should shrink as the self-propulsion speed increases
[15]. A more general study of chemoresponsive active
colloids in the limit of fast chemical dynamics suggests a
far larger potential for pattern formation than is predicted
by the KS model [10].
Here we propose a theoretical framework for active

colloids that describes at a continuum level not only
colloidal and chemical densities, but also the local mean
orientation (“polarization”) of the active particles. We
thereby uncover new instability mechanisms which show
that chemorepulsion can lead to clustering and pattern
formation. These mechanisms were largely ignored in the
literature so far, perhaps because chemoattraction offers a
more obvious route to (bulk) phase separation.
We call our two mechanisms the “Janus instability” and

the “delay-induced instability.” The physics underlying
these is indicated in Figs. 1(b) and 1(c), respectively.
For the Janus instability, active particles reorient and
move towards a fluctuation-induced minimum in the
chemical density, thereby forming an inward-pointing aster
[Fig. 1(b)]. Because of local anisotropy of the chemical
production (inevitable for Janus colloids half-coated with
catalyst), this cluster produces a shell of chemorepellent,
keeping the particles within it together and driving others
away, so that it cannot grow beyond a certain size. In the
delay-induced instability, which appears in a different
parameter regime, colloids respond differently to the same
fluctuation. Initially they accumulate at the chemical
minimum, producing more chemical and lifting the con-
centration there [Fig. 1(c)]. If they reorient slowly on the
time scales needed to cancel the initial fluctuation, the
production can overshoot and the minimum becomes a
maximum before particles finally drift away. This can
trigger a cyclical instability towards traveling wave pat-
terns. When both instability mechanisms act together, we
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predict “blinking” patterns where clusters continually
exchange particles and never reach a steady state.
These chemorepulsive instabilities may shed light on the

dynamic clustering or microphase separation recently
observed in experiments [5,6,16]. Both instability mecha-
nisms induce clusters of a self-limiting area that grows with
self-propulsion speed, which qualitatively agrees with
experiments [5,16]. More generally, chemorepulsive insta-
bilities suggest new design principles for the active self-
assembly of colloids into spatiotemporal patterns with
tunable properties. Our key message that chemorepulsion
can generate instabilities of uniform states could also be
relevant for biophysics, where the chemoattractive KS
instability has long been assumed to drive structure for-
mation among microorganisms [17–19].
We describe active colloids (living or artificial) at a

coarse-grained level, through their density and polarization
fields, ρðx; tÞ and pðx; tÞ. The latter is a local average of the
unit vector describing the propulsive direction; this rotates
in response to gradients of a chemical density field cðx; tÞ.
The colloids self-propel at constant speed v0 and also have
isotropic diffusivity Dρ. To represent autophoretic colloids
(or signaling bacteria), we assume that the chemical species
is produced by the colloids at local rate k0ρ and decays at
rate kd, leading to

_ρ ¼ −∇ · ðρv0pÞ þDρ∇2ρ;

_p ¼ −γpþDp∇2pþ β∇c − γ2jp2jp;
_c ¼ Dc∇2cþ k0ρ − kdcþ ka∇ · ðρpÞ: ð1Þ

Here β measures the chemotactic coupling strength; when
positive, this represents chemoattraction [Fig. 1(a)], for
instance bacteria swimming up food or aspartate gradients
[18,20]. Here, however, we focus on negative β, describing
chemorepulsion, as arises for at least some types of colloid
with nonuniform surface mobility [10], or for cells fleeing
from toxins [18]. In Eq. (1) the polarization decays locally
at a relaxation rate γ, set by rotational diffusion; it also has

translational diffusivity Dp ∼Dρ ∼ v20=τ [4], which smears
out details of p on scales below the “run length” v0=γ. The
term in γ2 describes saturation in p at strong alignment.
Finally, ka∇ · ðρpÞ, where ka has the dimensions of speed,
describes an anisotropic correction to the isotropic chemi-
cal production term (k0ρ), arising whenever the chemical is
produced by the colloid asymmetrically [21].
Rewriting Eq. (1) for dimensionless quantities ~t ¼ kdt,

~x ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kd=Dρ

p
, and setting ~ρ ¼ ρk0jβjv0=ðk2dDρÞ, ~p ¼

v0=ð
ffiffiffiffiffiffiffiffiffiffiffi
kdDρ

p Þp, ~c ¼ cv0jβj=ðkdDρÞ we show (in the
Supplemental Material [22]) that the parameter space is
spanned by five dimensionless variables Γ ¼ γ=kd,
Dp ¼ Dp=Dρ, Dc ¼ Dc=Dρ, κ ¼ kakd=ðk0v0Þ, and
Γ2 ¼ γ2Dρ=v20. Also s ¼ sgnðβÞ distinguishing positive
(s ¼ 1) and negative (s ¼ −1) chemotaxis. In the follow-
ing, we omit tildes.
We have solved Eq. (1) numerically on a square box of

side L by finite difference methods using periodic boun-
dary conditions and a small perturbation of the uniform
state ðρ;p; cÞ ¼ ðρ0; 0; ρ0Þ as initial conditions.
With chemoattraction (s ¼ 1), the initial uniform state is

stable for small ρ0, whereas for stronger coupling it is
unstable to the formation of dense colloidal clusters that
colocalize with maxima in c [Figs. 2(a) and 2(b)]. These
droplets coarsen continuously to yield complete phase
separation at late times, albeit featuring orientational order
in the form of a macro-aster [Fig. 2(d), inset]. This
chemically induced phase separation is well understood
[14]: colloids swim towards high chemical concentration
forming a cluster, which increases chemical production
locally, recruiting further particles, etc.
Although this feedback loop is absent for chemorepul-

sion (s ¼ −1), upon tuning ρ0 beyond a certain threshold,
we observe, strikingly, that the initial fluctuations amplify
also for chemorepulsive colloids. In marked contrast with
the chemoattractive case, the resulting dense colloidal
clusters do not coarsen beyond a characteristic size

FIG. 1 (color online). Schematics: (a) Colloidal Janus particles (spheres) half-coated with a catalytic material (yellow) that produces a
chemical species (blue); the colloids self-propel by autophoresis in the resulting gradient. Chemorepellent colloids propel from high to
low concentration of the chemical, chemoattractant colloids vice-versa. (b) Anisotropy-induced Janus instability and clusters of self-
limiting size. (c) Delay-induced instability, which can lead to traveling wave patterns.
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[Figs. 2(e)–2(h) and Supplemental Material [22], Videos
1,4,5]. The behavior en route to this steady state is
complex; it can feature amplitude oscillations, or “blink-
ing” (see Supplemental Material [22], Videos 1,4,5).
Blinking clusters dynamically exchange particles, before
settling down into a stationary arrangement, which nor-
mally consists of a hexagonal lattice of droplets and an
inverted pattern in the chemical density [Fig. 2(g)].
Deviations from the ideal hexagonal structure [Fig. 2(h)]
can be more or less pronounced, depending on the specific
parameter choices. As can be seen in Fig. 2(f) (inset),
chemorepulsive colloids point towards the chemical density
minima between the colloidal clusters, and the overall
orientational pattern consists of stable asters and anti-asters.
Parameter fine tuning, or choosing no-flux boundary
conditions instead of periodic ones, can lead instead to
seemingly irregular cluster distributions or permanent
blinking (Supplemental Material [22], Videos 4 and 5).
Intriguingly, we also find colloidal waves and traveling

oscillatory patterns. In particular, upon further increasing
the overall density ρ0 we observe an amorphous pattern
which evolves towards a more regular state, where clusters
continuously merge, split and decay (Fig. 3 and
Supplemental Material [22], Videos 2 and 3). Eventually,

the colloidal and chemical density fields may approach
rectangular latticelike patterns, which phase-lock and travel
at constant velocity along a common direction. The
selection of a simple traveling wave is favored by periodic
boundary conditions and small system sizes (Supplemental
Material [22], Video 2); when choosing large systems
(Supplemental Material [22], Video 3), or imposing no-flux
boundary conditions (which might better represent experi-
ments) the pattern persists as a flowing non-periodic state,
continuously forming clusters of well-defined size and
amplitude (Supplemental Material [22], Video 4).
To further understand the mechanisms of chemorepul-

sive pattern formation, we have performed a linear stability
analysis of our model. Assuming that p relaxes fast
compared to ρ and c and Γ2 ≪ 1 and Dp ≪ 1 we find
p ¼ ðs=ΓÞ∇c (see Supplemental Material [22]) and obtain,
after rescaling variables ρ0 ≡ ρ=Γ, c0 ≡ c=Γ, a generalized
KS (GKS) model [12,14,20] that accounts both for chemo-
repulsion (s ¼ −1), and anisotropic chemical production
(κ ≠ 0):

_ρ ¼ −s∇ · ðρ∇cÞ þ∇2ρ;

_c ¼ sκ∇ · ðρ∇cÞ þDc∇2cþ ρ − c: ð2Þ

FIG. 2 (color online). Time evolution of the density fields ρ, c, jpj (insets: p=jpj) for a weakly perturbed uniform initial state (color
shows value of the fields). (a)–(d): Clustering and phase separation for chemoattractive colloids (s ¼ 1, ρ0 ¼ 8). (e)–(h): Arrested phase
separation and stationary density pattern for chemorepulsive colloids resulting from the Janus instability (s ¼ −1, ρ0 ¼ 10). Other
parameters: Dp ¼ Dc ¼ κ ¼ Γ ¼ 1, Γ2 ¼ 10 and xu ¼ 5; tu ¼ 1. (Time and space units of τ ¼ t=tu and x ¼ x=xu).

FIG. 3 (color online). As Fig. 2, for s ¼ −1, ρ0 ¼ 8. The snapshots show the amorphous transient dynamics (a), traveling wave
patterns (b),(c) and continuously moving states (d) for chemorepulsive colloids resulting from the delay-induced instability. Other
parameters as in Fig. 2 for (a)–(c) and Dc ¼ 0.2; Dp ¼ 1; κ ¼ 0.5; Γ ¼ 1.0; Γ2 ¼ 6.0 and xu ≈ 1.83; tu ¼ 1 for (d).
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For s ¼ 1, linear stability analysis (see Supplemental
Material [22]) reveals the standard chemoattractive KS
instability when ρ0 > 1 (or in physical units, when
ρ0 > ðDρkdγ=k0βv0Þ) [14,20]. For chemorepulsion
(s ¼ −1) we find a qualitatively different picture, in which
instability arises when κρ0 > Dc, or, in physical units,
when kaβρ0 > γDc. In contrast to the attractive case, the
instability is now determined by the anisotropic reaction
term; it disappears for isotropic active colloids, ka → 0.
Hence we refer to this as the “Janus instability.” In marked
contrast to the classical KS case for chemoattraction, this is
a short wavelength instability, arising only for q > q� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ρ0Þ=ðκρ0 −DcÞ
p

(Fig. 1 in the Supplemental
Material [22]). For large ρ0, or large κ, the corresponding
length scale is l� ∼ κ1=2 [l� ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDρkaÞ=ðk0v0Þ
p

in physical
units], and diverges when the isotropic production rate
vanishes. Remarkably, the steady-state cluster domain area
grows as l�2 ∝ v0 (assuming Dρ ∝ v20 [4,5]), a prediction
which turns out to remain valid for Eqs. (1) even with finite
values ofDp ∝ v20. This may explain recent observations of
self-limiting active clusters, whose particle number
increases linearly with v0 [5,16].
Why does the Janus instability lead to arrested, not full,

phase separation? We find that two effects limit cluster
growth. First, each cluster creates a shell of chemorepellent
which drives away colloids passing nearby, hindering their
arrival. Second, as the cluster increases in size, so does the
quantity of chemorepellent created at its core via the
isotropic production term: once too large, this disintegrates
the cluster. Note that the GKS model predicts a short
wavelength divergence of the growth rate, Re½λðqÞ� as
jqj → ∞which is generally prevented by rotational dynam-
ics as we show in the Supplemental Material [22].
A general, numerical evaluation of the dispersion rela-

tions λðqÞ1;2;3 for the three distinct modes that emerge from
the full model Eq. (1) allows us to plot phase diagrams on
the ρ0; κ plane; a typical example is shown in Fig. 4. In
general, such phase diagrams show three different regimes:
(i) one in which the uniform state is stable (black in Fig. 4);
(ii) one in which the growth rate of the instability is real and
positive, which corresponds to the Janus instability (orange
to white); and (iii) one in which there is a nonzero
imaginary part in the growth rate (purple with green stars).
Modulo small corrections from finite-size effects, the
length scales set by the wave vectors of maximal growth
rate closely match those observed in the simulations of
Figs. 2 and 3.
Remarkably, the phase diagram shows that the oscil-

latory instability can develop even for isotropic chemical
production, κ ¼ 0, at large colloidal densities (red ellipse
in Fig. 4). Accordingly we must have a second instability,
distinct from the Janus mechanism which requires finite κ.
(The cyan line in Fig. 4 does not reach κ ¼ 0 at finite ρ0.)
This can be traced to the finite relaxation rate of p which

we neglected when deriving the GKS model Eq. (2).
Because the oscillatory unstable mode requires in effect a
delayed reorientation of p, we name this the “delay-
induced instability.” Intuitively, it can be understood as
follows [see the simplified, 1D cartoon in Fig. 1(c)].
Chemorepulsive colloids move towards the minima of an
initial fluctuation in chemical density (upper panel, solid
line), accumulate there, and produce chemicals opposing
the original fluctuation. Because of a finite response time
this production does not stop at uniform density (middle
panel) but overshoots, leading to reversal and possible
amplification of the initial fluctuation (dashed blue line).
This cycle repeats (lower panel) and represents a delay-
induced feedback loop: an initial fluctuation of the
chemical density field triggers another fluctuation of
the same field but with opposite sign.
To understand the delay-induced instability quantita-

tively, we develop a minimal model in the Supplemental
Material [22], showing that consecutive fluctuations can
amplify if ρ0 > 1, leading to an oscillatory instability. Deep
in the pattern forming regime (ρ0 ≫ 1) we find that the
wavelength of the fastest growing mode scales as ρ1=20 , or in

physical units as l� ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβjv0k0ρ0=k3d

q
predicting (in accor-

dance with our numerical simulations) that the cluster area
grows linearly with the self-propulsion velocity.
The transient or permanent "blinking” of clusters dis-

cussed above appears close to the transition line between
the Janus instability and the delay-induced instability
(Fig. 4). Here, stationary and oscillatory modes of different

FIG. 4 (color online). Phase diagram showing instabilities of
the uniform state for Eqs. (2) and Dc ¼ Dp ¼ Γ ¼ 1. Black
denotes stability; colors show the wavelength of the fastest
growing unstable mode and green stars show where this mode
is oscillatory. The red ellipse highlights instability for κ ¼ 0. The
cyan line shows the onset of instability as predicted by the GKS
model Eq. (2). Circles mark the parameter sets of Figs. 2(e)–2(h)
and Figs. 3(a)–3(c). Inset: Dispersion relation for the encircled
parameters (a third solutions, not shown, is real and negative).
Upper arrow heads: fastest growing mode.
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wavelength grow at a similar rate out of the uniform state
and lead to an effective particle motion on top of a
stationary density profile which causes the blinking. (See
Supplemental Material [22]).
In conclusion, our two chemorepulsive instabilities

create a robust new route to pattern formation. Both
instabilities lead to clusters of self-limiting area which
grows linearly with propulsion speed v0. This agrees with
recent experimental observations [5,6,16] and may shed
light on the still mysterious mechanism underlying their
appearance. (Competing explanations based on the chemo-
attractive KS instability either predict macrophase separa-
tion [26] or clusters shrinking with increasing v0 [15].)
Although we mainly report regular patterns in our figures,
our model suggests that irregular cluster arrangements,
more akin to patterns found in experiments with active
colloids, can also be found depending on location in
parameter space and boundary conditions (Videos 3–5,
Supplemental Material [22]). More generally, our chemo-
repulsive instabilities might inform design principles for
creating active colloids that can self-assemble into spatio-
temporal patterns with desired properties. Finally, our key
finding that chemorepulsion can generate the instability of
uniform states might also be important for biophysics,
where the chemoattractive KS instability has long been
invoked to explain patterns of microorganisms [17–19]. In
growing biofilms, for example, the interaction of bacteria
with a self-secreted polymer [27] might be interpreted as
chemorepulsion.
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