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Living cells can enhance their fitness by anticipating environmental change. We study how accurately
linear signaling networks in cells can predict future signals. We find that maximal predictive power results
from a combination of input-noise suppression, linear extrapolation, and selective readout of correlated
past signal values. Single-layer networks generate exponential response kernels, which suffice to predict
Markovian signals optimally. Multilayer networks allow oscillatory kernels that can optimally predict non-
Markovian signals. At low noise, these kernels exploit the signal derivative for extrapolation, while at high
noise, they capitalize on signal values in the past that are strongly correlated with the future signal. We
show how the common motifs of negative feedback and incoherent feed-forward can implement these
optimal response functions. Simulations reveal that E. coli can reliably predict concentration changes for
chemotaxis, and that the integration time of its response kernel arises from a trade-off between rapid
response and noise suppression.
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The ability to respond and adapt to changing environ-
ments is a defining property of life. Single-celled organisms
employ a range of response strategies, tailored to the
environmental fluctuations they encounter. Gradual
changes in osmolarity, pH, or available nutrients are sensed
and responded to adiabatically. In this regime, the sensory
performance as measured by the mutual information
between stimulus and response, limits the achievable
growth rate [1–3]. In contrast, when environmental changes
are rapid and unpredictable, sensing may be futile, since
any response would come too late. Here, phenotypic
heterogeneity can help by providing a subpopulation of
preadapted cells [4]. An intermediate regime exists where
environmental fluctuations occur with some regularity, on
the cellular response time scale. It is then possible and
desirable for the cell to predict the future environment, in
order to initiate a response ahead of time. When the cellular
response takes a finite time τ to become effective, the
predictive mutual information between the current sensory
output and the environment τ later, limits growth [5].
Sensing strategies that leverage correlations of a stimulus
with future environmental changes have indeed been
observed, and reevolved experimentally [6,7].
This raises the question of what makes a cellular network

an optimal predictor, rather than instantaneous reporter, of
the environment. Intuitively, to predict, one should rely on
the most up-to-date information, i.e., respond to the current
input. However, cells often sense non-Markovian (NM)
signals, whose past trajectories could add useful informa-
tion. Intriguingly, in such cases, sensory networks often
react not instantaneously but instead more slowly, on the
time scale of the signal [8,9].

A slow network time integrates the input signal, which
may dampen the response, but can also enhance the
estimate of the current input signal by filtering noise from,
e.g., receptor-ligand binding [10–15]. Moreover, a slow
response may enhance prediction by building a memory of
the signal history which is informative about the future
signal. What features of signal and response then make a
noninstantaneous response beneficial for prediction?
Here, we study how the accuracy of prediction depends

on the noise and correlations in the input, the forecast
interval, and the design of the response system.We find that
single-layer responders, such as push-pull networks, can
improve prediction by responding slowly. This not only
allows noise averaging, but also enables reading out past
signals that are more correlated with the future signal than
the current signal is. Multilayer networks can further
enhance prediction via nonmonotonic response functions
tailored to the input. They can optimally predict low-noise
signals by exploiting the signal derivative, and high-noise
signals by coherently summing informative past signal
values. This can be implemented via negative feedback.
Finally, we perform simulations of E. coli bacteria that
chemotax in spatially varying concentration fields. The
simulations reveal that E. coli chemotaxis relies on pre-
dicting future concentration changes. They suggest that
the optimal integration time of the kernel arises as a
compromise between the benefit of responding quickly
to the most recent concentration values, and the need to
filter input noise.
Consider a general sensory network that responds to a

time-varying extracellular signal by binding ligand mole-
cules, relaying the signal via intermediate species, and
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finally producing an output species [Fig. 1(a)]. Its pre-
diction capability depends on both responder and input
properties. Concerning the input, prediction fundamentally
requires that past inputs contain information about the
future; i.e., the signal’s conditional probability density
p(sðtþ τÞjsðtÞ; sðt0Þ;…) really depends on the signal
values at t > t0 > � � �. For Markovian input, the only
dependence is on sðtÞ, and perfect instantaneous readout
of sðtÞ would in fact be the optimal prediction strategy for
all future sðtþ τÞ [5]. However, in the presence of input
noise ξ, arising from, e.g., receptor-ligand binding, the
responder senses the degraded signal lðtÞ¼ sðtÞþξðtÞ.
Then even for Markovian s, the added noise makes
p(sðt þ τÞjlðtÞ; lðt0Þ;…) dependent on past values
lðt0Þ;…, since they help determine the current input sðtÞ
by averaging over the noise ξ, and then from sðtÞ the future
sðtþ τÞ. Thus a slow response can help prediction of
any noisy signal via the mechanism of time integration
(which also improves accuracy for constant, noisy signals
[10–17]). As detailed below, for NM signals, another
prediction mechanism exists: a responder with memory
enables readout of additional information from past
signals sðt0Þ;…, improving predictions by exploiting signal
correlations.
We take the input signal sðtÞ to be stationary Gaussian,

characterized by hsðt0Þsðt0 þ tÞi¼ σ2srsðtÞ where rs denotes
the normalized autocorrelation function, and σs, the signal
amplitude. For Markovian processes, rsðtÞ ¼ expð−λtÞ. A
family of NM signals can be generated via a harmonic
oscillator defined by ∂ωtq ¼ p; ∂ωtp ¼ −q − ηpþ ffiffiffiffiffi

2η
p

ψ

with unit white noise ψ , by letting s≡ q; see Fig. 1(b).
The damping parameter η controls the signal statistics:
in the overdamped regime η > 2, rsðtÞ is monotonically
decreasing, while for η < 2 it is oscillatory with a period
approaching T ¼ 2π=ω; in both cases, the signal s obeys
Gaussian statistics. This family of signals allows analytical
results and interpolates fromMarkovian to non-Markovian,
long-range correlated, oscillatory signals. We model input
noise as white, hξðtÞξðt0Þi ¼ σ2sϑ

2δðt − t0Þ, where ϑ is the
relative noise strength.
Concerning the responder, we focus on linear signal-

ing networks [12,18] which afford analytical results and
often describe information transmission remarkably well
[19–21]. Because we are interested in how prediction
depends on the correlations and noise in the input, we
consider responders in the deterministic limit. The output
xðtÞ ¼ R

t
−∞ kðt − t0Þlðt0Þdt0 of the network is then deter-

mined by its linear response function kðtÞ.
The predictive power of a signal-responder system is

measured in a rigorous and biologically relevant way [5] by
the predictive mutual information I½x; sτ� ¼ hlogfpðx; sτÞ=
½pðxÞpðsτÞ�gi between the current output xðtÞ and the
future input sτ ≡ sðtþ τÞ. Because x is jointly Gaussian
with the input, the predictive information reduces to a
function I½x; sτ� ¼ − 1

2
logð1 − r2xsτÞ of the input-output

correlation coefficient

rxsτ ¼
ΨðτÞ

½Σþ Ξ�1=2 : ð1Þ

The overlap integral ΨðτÞ≡ R∞
0 kðtÞrsðtþ τÞdt is the part

of the normalized output variance σ2x=σ2s that is correlated
with the prediction target sτ. The denominator splits σ2x=σ2s
into contributions from past signal, Σ≡R

∞
0 kðtÞrsðt−t0Þ×

kðt0Þdtdt0, and past noise Ξ≡ ϑ2
R

∞
0 kðtÞ2dt [5].

We first consider a push-pull network, consisting of a
single layer in which the output x is directly activated
by the receptor. It is characterized by an exponential kernel
kðtÞ ∝ expð−μtÞ with response speed μ. Figure 1(c) shows
how accurately such a network can predict Markovian
signals, as measured by the predictive information I,
obtained analytically from Eq. (1) [5]. Without input noise
(ϑ → 0), the fastest responders maximize the accuracy I,
as expected. When including input noise, there exists an
optimal response speed μti ¼ ð2λ=ϑ2 þ λ2Þ1=2, independent
of τ, and approaching μti → λ for high noise [22]. The
optimum arises from a trade-off between rapid tracking of
the input and noise averaging [5].
Figure 1(d) shows I for exponential responders predict-

ing oscillatory (η ¼ 0.5) NM signals. As before, input noise
disfavors the fastest responders. Interestingly, however, a
finite response speed can be optimal even when there is no
input noise (ϑ ¼ 0): For prediction intervals above about a
quarter period, frequency-matched responders with μ� ≃ ω
(obtained numerically [5]) perform best.

(a) (b)

(c) (d)

FIG. 1 (color online). Biochemical prediction. (a) A sensory
network (black box) with output x (red) responding to an
extracellular ligand s (black) via noisy ligand-bound receptors
l (blue). (b) Example traces (solid lines) of Markovian (λ ¼ 1,
red) and non-Markovian (NM) signals s (ω ¼ 1, η ¼ 4; 2; 0.5,
downwards), yielding outputs x of exponential responders
with μ ¼ 1 (dashed). Predictive information I½x; sτ� in nats
(ln 2nats ¼ 1bit) for Markovian signals (c) and NM signals with
damping η ¼ 1=2 (d), as a function of the speed μ of an
exponential responder, for different prediction intervals τ, and
for noise level ϑ ¼ 0 (solid lines) and ϑ ¼ 0.1 (dashed lines).
Dotted line in (c) denotes μti.
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The optimal μ� is not an effect of simple time integration
but rather results from exploiting the oscillatory signal
correlations. When the forecast interval τ ≪ T, r2xsτ is
maximized by increasing the overlap ΨðτÞ2 via a short
kernel k that samples high values of the input correlation
function rs; see Figs. 2(a) and 2(b). The optimal kernels
never become instantaneous, however, since that would
strongly increase Ξ. As τ increases, μ� initially increases:
kðtÞ decays faster so that it continues to overlap with the
positive lobe of rsðtþ τÞ; input and output remain pos-
itively correlated. Surprisingly, beyond a critical prediction
interval τc ≃ 0.22T, μ� drops discontinuously [Fig. 2(b),
solid to dashed line]. The response now integrates
the negative lobe of rs, anticorrelating output and input
[Fig. 2(a)]. Effectively, the output x lags behind the input s
by an amount Λ, so that the current output xðtÞ reflects the
past input sðt − ΛÞ rather than the current input sðtÞ. This
enhances prediction, because the past signal sðt − ΛÞ is
more (anti)correlated with, and hence more informative
about, the future sðtþ τÞ than the present signal sðtÞ is, as
shown by the nonmonotonic signal autocorrelation func-
tion: rsðΛþ τÞ2 > rsðτÞ2 (cf. Fig. S2 in [5]). The optimal
response speed μ� is such that τ þ Λ≃ T=2; the response
kernel kðtÞ then probes rs around its minimum, maximizing
the squared overlap ΨðτÞ2 between them [Fig. 2(a)]. As τ
increases further, increasing μ keeps the kernel localized in
the negative lobe of rs, until another transition at higher
τ≃ 0.75T focuses the response on the next positive lobe of
rs. Simulations confirmed this mechanism also for non-
linear responders and various input waveforms and noise
strengths [5].

Signaling networks typically consist of more than one
layer [23], generating complex kernels. To explore the design
space, we maximize the predictive information over all
kernels. For Gaussian signals, this is equivalent [5] to finding
the optimal kernel k� that minimizes the mean squared
prediction error hðx − sτÞ2i, as in Wiener-Kolmogorov filter
theory [12,22,24,25], used below.
The resulting optimal kernel remains exponential for input

signals that are Markovian [5], so that kM� ðtÞ ∝ expð−μtitÞ,
with μti, as before, implementing time integration. Hence,
a single, slowly responding, push-pull network layer is
enough to perform globally optimal predictions of noisy
Markovian signals; additional network layers cannot enhance
prediction.
For NM but overdamped signals (η > 2), optimal kernels

k� have an almost exponential shape, which is insensitive
to the prediction interval, Fig. 2(c) (see [5]). This indicates
a prediction strategy based mainly on time integration to
determine the current sðtÞ.
In contrast, oscillatory NM signals with η < 2 yield

optimal kernels that are oscillatory, Fig. 2(d). Their shape
depends on the prediction interval τ, and on the correlations
and noise in the input [Fig. 3(a)]. At low noise, optimal
kernels integrate only a short time window. They consist of
a sharply peaked positive lobe followed by an undershoot,
effectively estimating the future signal value from its
current value and derivative [5]. This strategy of linear
extrapolation avoids including past signals, which are
inherently less correlated with the future. The capability
to take derivatives enables a rapid response even when the
current signal value carries no predictive information,
rsðτÞ ¼ 0; in contrast, in this situation exponential respond-
ers would need to respond slowly, to pick up past,
informative signals (Fig. 2).

FIG. 3 (color online). (a) The optimal kernel depends on the
correlations and the noise ϑ in the input signal. Autocorrelation
function (black) and optimal kernels k� at τ ¼ 0.3 for oscillatory
NM signals with η ¼ 0.5, for two different noise levels ϑ. At low
noise, the kernel consists of a positive lobe followed by a single
undershoot. This corresponds to prediction based on linearly
extrapolating the current signal. In contrast, at high noise, the
kernel echoes the signal correlation function, exploiting signal
values in the past that correlate with the future. (b) The optimal
kernels k� strongly improve prediction over optimal exponential
kernels μ� [as in Fig. 2(b)] around τ ¼ τc ≈ 0.2T; ϑ ¼ 1.0; for
low noise, see Fig. S3 [5].

FIG. 2 (color online). Prediction by optimizing correlations.
(a) NM autocorrelation rs at η ¼ 0.5 (black). Optimally pre-
dictive exponential kernels kðt − τÞ at noise level ϑ ¼ 0.25 for
τ=T ¼ 1=8; 1=4; 3=8 as indicated (orange, blue, red, gray, re-
spectively), with corresponding overlap integrands rsðtÞkðt − τÞ
(shaded). (b) Optimal μ� vs prediction interval for these param-
eters. Solid, dashed lines: positive, negative sx correlation,
respectively. (c) As (a) at the same τ values but for the globally
optimal kernels k� and overdamped signal η ¼ 4. (d) As (c) but
for underdamped signal at η ¼ 0.5.
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As noise levels ϑ rise, noise averaging becomes increas-
ingly important, which demands longer kernels. However,
to avoid signal damping, the optimal kernel must coher-
ently sum past signal values. For oscillatory signals, this
requires an oscillatory kernel, which integrates the signal
with alternating signs. The prediction enhancement of
globally optimal kernels over optimal exponential kernels
is indeed largest for oscillatory input signals and, for τ ≈ τc,
it can reach up to 400% [Fig. 3(b)]. Interestingly, in the
limit ϑ → ∞, maximizing Eq. (1) gives the simple result
k�ðtÞ ∝ rsðtþ τÞ [5], showing that at high noise, the
optimal kernel mimics the input correlations.
Optimal oscillatory kernel shapes like k� in Fig. 3 can be

implemented via negative feedback [5], a common motif in
gene networks and signaling pathways [26–28]. Another
common motif, incoherent feed-forward [23], only allows
kernels with a positive lobe followed by a single undershoot
[5]. Our results show that this is useful for predicting low-
noise non-Markovian signals, but suboptimal at high noise.
In summary, accurate prediction requires capitalizing

on past signal features that are correlated with the future
signal, while minimizing transmission of uncorrelated past
signals and noise. Single-layer networks suffice to predict
Markovian signals optimally by noise averaging. Multilayer
networks predict oscillatory signals optimally, by fast linear
extrapolation at low noise, and by coherent summation at
high noise. In the high noise limit, the optimal network
response mimics the input: k�ðtÞ ∝ rsðτ þ tÞ.
To explore the importance of predictive power in cellular

behavior, we have studied E. coli chemotaxis. E. colimoves
by alternating straight runs with tumbles, which randomly
reorient it. In a spatially varying environment, this motion
is biased via a signaling pathway, whose output xðtÞ
controls the propensity αðtÞ that a running bacterium will
tumble. We have performed simulations of chemotaxing
bacteria in static concentration fields cð~rÞ in two dimen-
sions, using the measured response kernel k [29–31]. At
low concentrations, the signaling noise is dominated by the
input noise. As in our theory, we therefore ask how the
predictive power depends on the kernel and the input noise,
ignoring intrinsic noise [32]. The tumbling propensity is
then given by αðtÞ ¼ α0½1 − xðtÞ�, where α0 ¼ 1=s is the
basal tumbling rate and xðtÞ ¼ R

t
−∞ kðt − t0Þlðt0Þdt0. The

input lðt0Þ ¼ sðt0Þ þ ξðt0Þ depends on the concentration
signal sðtÞ ¼ c½~rðtÞ� and the input noise ξðtÞ of relative
strength θ, arising e.g., from receptor-ligand binding or
receptor conformational dynamics. The kernel kðtÞ is
adaptive, i.e., it integrates to 0, which allows the bacterium
to respond to a wide range of background concentrations
[29,30]. We compare adaptive kernels of varying range
defined by kνðtÞ≡ ν2kðνtÞ, where ν defines the response
speed (see also [5]).
The sensory output modulates the delay ∼1=αðtÞ to the

next tumble. This suggests that high chemotactic efficiency
requires accurate signal prediction. However, it is less

obvious what feature of the signal the system actually
predicts: The future concentration? Or the change in
concentration? More generally, what are the relevant input
and output variables that control chemotaxis? Only for
these variables can we expect that chemotactic performance
is correlated with predictive information.
To address this question, we performed simulations

for three different kernels, ν ¼ 0.5; 1; 3 where ν ¼ 1
corresponds to the measured kernel, and for two input
noise levels, θ ¼ 0; 2. As our performance measure, we
use the mean chemotactic speed v̄δt ¼ h½~rðtþ δtÞ − ~rðtÞ�·
∇c½~rðtÞ�=fδt∥∇c½~rðtÞ�∥gi; similar results are obtained for
the mean concentration hc½~rðtÞ�i [5]. We find that v̄δt is
poorly correlated with the predictive information I½x; sτ�
between current output and future concentration [5]. In
contrast, it is well correlated with the predictive information
I½x; sτ − s� between current output and future concentration
change, as Fig. 4 shows. Hence, the search strategy of E.
coli is not based on predicting the future concentration but
rather its trend, in accordance with the observation that the
bilobed kernel k takes a time derivative of the signal. If this
is positive, E. coli “expects” that the concentration will
continue to rise and will extend its run.
Figure 4 also shows that the optimal kernel that max-

imizes the information and hence chemotactic speed
depends on the input noise θ. A fast kernel emphasizes
up-to-date information about recent concentration changes,
enabling an accurate and rapid response at low noise. At
high noise, its performance drops because it cannot filter
the input noise and hence cannot reliably predict future
concentration changes. The optimal kernel range then
arises from a trade-off between agility and robustness.
Lastly, how far must E. coli look into the future for

efficient chemotaxis? To anticipate concentration changes,
the prediction horizon, i.e., the time over which predictive
information extends, should exceed the response time.
According to Eq. (1) the prediction horizon is bounded

(a) (b)

FIG. 4 (color online). The predictive power of E. coli in a
sinusoidal concentration field with period L ¼ 400 μm, generat-
ing a nonoscillatory input signal [5], as a function of the forecast
interval τ. Information is shown for the wild-type E. coli kernel
with ν ¼ 1 (blue), for a faster kernel with ν ¼ 3 (red) and a slower
kernel with ν ¼ 0.5 (black), for noise levels θ ¼ 0 (a) and 2 (b).
Corresponding chemotactic speeds v̄δt¼4s are given in μm=s.
Bacteria run at 20 μm=s.
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by the signal correlation time, which is determined by the
length scale of the concentration field and by the motile
behavior, to be explored in future work. Already, Fig. 4
indicates that the prediction horizon of E. coli is indeed
longer than the response time, as IðτÞ decays slower than
1=α0 ¼ 1s. Our results thus suggest that E. coli can indeed
reliably anticipate concentration changes.
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