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We derive general bounds on the linear response energy absorption rates of periodically driven many-
body systems of spins or fermions on a lattice. We show that, for systems with local interactions, the
energy absorption rate decays exponentially as a function of driving frequency in any number of spatial
dimensions. These results imply that topological many-body states in periodically driven systems, although
generally metastable, can have very long lifetimes. We discuss applications to other problems, including the
decay of highly energetic excitations in cold atomic and solid-state systems.
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Introduction.—Time-dependent driving recently
emerged as a new versatile tool for engineering various
quantum states of matter. In noninteracting systems, peri-
odic driving can be used to modify band structures, and in
particular to make them topologically nontrivial [1–4].
Experimentally, periodic driving has been used to realize

strong artificial magnetic fields [5], as well as 2D Bloch
bands with nonzero Chern numbers (similar to the Haldane
model) in systems of cold atoms in optical lattices [6,7].
Theoretically, natural extensions of these ideas to topo-
logically nontrivial Floquet many-body states have been
proposed. In particular, it was suggested that topological
Floquet bands can host fractional Chern insulators [8], as
well as symmetry-protected topological states [9].
Topological order and more generally quantum order are

usually associated with ground states and low temperatures,
where they are protected by a finite excitation gap.
However, periodic driving breaks energy conservation,
making the very concept of the ground state meaningless.
It was argued [10–12] that under driving, generic many-
body systems that obey the eigenstate thermalization
hypothesis [13–15], eventually heat to up to an infinite-
temperature, featureless state. Thus, “Floquet topological
insulators” are generally metastable. It is important to
understand their lifetimes, and use the theoretical under-
standing to design experiments in which the Floquet many-
body states would be long-lived.
In this Letter, we derive general results regarding the

heating of periodically driven many-body systems on a
lattice. We consider both the cases of local driving (time-
dependent perturbation acting only on a few degrees of
freedom), and a global driving (driving applied everywhere
in the system). The latter setup is relevant to cold atom
experiments [5–7]. Assuming that interactions are local, we
prove a general bound for the linear-response heating rates,
which indicates that at high driving frequency (much higher
than a natural energy scale of the system, e.g., kinetic or

interaction energy of one particle), heating is exponentially
slow. Fundamentally, this bound follows from the locality
of quantum dynamics in systems with local interactions,
and, for the case of global driving, relies on the Lieb-
Robinson bounds.
Results.—We consider a lattice system of spins or

fermions with a local Hamiltonian H ¼ P
N
i¼1 hi, subject

to a periodic time-dependent perturbation with an operator
O ¼ P

iOi, which is a sum of one or more local terms Oi.
It is understood that i runs over the sites of the lattice and
hi; Oi act on a fixed, finite number of sites around i. For
simplicity, we focus on the case of harmonic driving with
frequency ω and strength g:

HðtÞ ¼ H þ g cosðωtÞO; ð1Þ

and we fix ∥Oi∥ ≤ 1 for concreteness. We assume that the
system is initially in a thermal equilibrium, and is described
by a density matrix ρβ, β ¼ 1=T. The energy absorption
rate dE=dt is related to σðωÞ, the dissipative part of the
linear-response function, by dE=dt ¼ 2g2ωσðωÞ, upon
averaging over a cycle and up to higher orders in g. The
response σðωÞ can be expressed in terms of different-time
commutators of operators Oi:

σðωÞ ¼
X
ij

σijðωÞ;

σijðωÞ ¼
1

2

Z
∞

−∞
dteiωth½OiðtÞ; Ojð0Þ�iβ; ð2Þ

where h� � �iβ denotes thermal averaging and OiðtÞ refers
to the Heisenberg dynamics generated by the time-
independent H. One can show that ωσðωÞ is positive
and symmetric in ω, see, e.g., Refs. [16,17]. For concrete-
ness, let us take ω ≥ 0 so that σðωÞ ≥ 0. To be precise, in
finite volume, ωσðωÞ is a positive distribution rather than
a bona fide function and we will need to integrate this
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distribution over small intervals to state rigorous results: we
write fð½ω1;ω2�Þ≡ R

ω2
ω1

fðωÞdω.
Local driving: First, using the locality of the

Hamiltonian, we prove the following bound for individual
terms σijðωÞ.
There is a κ > 0 and a numerical constant C such that,

for any δω > 0;ω > 0,

jσijð½ω;ωþ δω�Þj ≤ Ce−κjωj; ð3Þ

uniformly in the total volume. Note that it is only the
dissipative (asymmetric in time) part of the response
function that decays exponentially. The reactive (symmetric
in time) part contains a principal value integral rather than a
δ function, cf. Eq. (5), in energy, and it generically decays
no faster than 1=ω.
We first prove Eq. (3) for i ¼ j. It is convenient to write

σii as a sum of the contribution of individual eigenstates jni
of H:

σiiðωÞ ¼ π
X
n

pn½γniiðωÞ − γniið−ωÞ�; ð4Þ

where pn ¼ ðe−βEn=ZÞ, Z ¼ Trðe−βHÞ is the probability
that the system is in eigenstate jni, and γnii is given by

γniiðωÞ ¼
X
m

jhmjOijnij2δðEn − Em − ωÞ: ð5Þ

To estimate this quantity, let us rewrite it as follows, for
any k:

γniiðωÞ ¼
X
m

jhmj½½½Oi;H�; H�;…; H�jnij2
ω2k δðEn − Em − ωÞ;

ð6Þ

where the rhs contains k commutators with H, and we have
used the fact that En − Em ¼ ω. Next, we use the fact that
in local systems, the norm of ½½½Oi;H�; H�;…; H� can be
bounded as

∥½½½Oi;H�; H�;…; H�∥ ≤ εkk!; ð7Þ

where ε is an energy scale that can be expressed via ∥hi∥
(local norm of the Hamiltonian), the range of hj andOi, and
the coordination number of the lattice as follows. We
denote by R the radius of the smallest ball including the
support of hi (the support of hi is the set of spins where
the operator hi acts nontrivially), and by RO the radius of
the support of O. For simplicity, we assume R ¼ RO. We
write

½…; ½½O;H�; H�;…; H� ¼
X

j1;…;jk

½…; ½½O; hj1 �; hj2 �;…; hjk �

where j1;…; jk are such that jj1j ≤ 2R (assuming, without
loss of generality, that O acts around the origin), and such
that, for any 1 < l ≤ k, there exists ji with 1 ≤ i < l such
that jjl − jij ≤ 2R. First, each term in the sum is bounded
by 2k∥hi∥k (using ∥O∥ ≤ 1). Second, the number of terms
in the sum is bounded by αkð2RÞkdk!, where α is the
number of sites of the lattice in a ball of unit radius.
Therefore, the result, Eq. (7), is obtained with

ε ¼ 4α∥hi∥Rd:

Integrating Eq. (6) over an interval ½ω;ωþ δω�, and
using the inequality Eq. (7), we obtain:

γniið½ω;ωþδω�Þ≤
�
εkk!
ωk

�
2

≤
�
εk
ω

�
2k
; ∀ k∈N: ð8Þ

Choosing k ¼ ðω=εeÞ, we arrive at the estimate

γniið½ω;ωþ δω�Þ ≤ e−κω; κ ¼ 2

εe
; ð9Þ

and therefore, using Eq. (4) and the fact that
P

npn ¼ 1, we
obtain

σiið½ω;ωþ δω�Þ ≤ 2πe−κω: ð10Þ
The off-diagonal terms σij, i ≠ j, can be bounded by

diagonal ones using the positive definiteness of ωσij and
the Cauchy-Schwartz inequality:

jσijðωÞj ≤
1ffiffiffi
2

p ½σiiðωÞ þ σjjðωÞ�: ð11Þ

Thus, just like diagonal terms, off-diagonal terms decay
exponentially at large frequency, concluding the proof.
The above result can be immediately applied to the case

of local driving, when the operator O acts only on a finite
number of n lattice sites (i.e., Oi on other sites are taken to
be zero), while the system size N is taken to infinity. For
such a setup, the energy absorption rate will be smaller than
∼n2e−κjωj, where n is the number of lattice sites affected by
the periodic driving.
The result, Eq. (3), has a clear intuitive meaning in a

particular case of a system with weak interactions, e.g., a
weakly interacting Fermi gas. Then, absorbing a large
energy ω requires a creation of n ∼ ω=J particle-hole pairs
(J in this case denotes a maximum energy of one electron-
hole pair)—a process which will be suppressed as Vn,
where V is the interaction strength. Our analysis shows that
the energy absorption rate remains exponentially small
much more generally: the bound applies to systems without
gaps and also to systems with strong interactions.
Global driving: Next, we consider the case of global

driving, when Oi ≠ 0 for all lattice sites. This setup is
generic and relevant, in particular, to all experiments in
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which driving is used to create topological states. In this
case, we prove a different bound.
There is a κ > 0 and a numerical constant C such that,

for any δω > 0;ω > 0,

jσð½ω;ωþ δω�Þj ≤ NCe−κjωj; ð12Þ

with N the total number of spins. It is intuitively clear that
the absorption rate in this case should be proportional to N.
Therefore one cannot simply use the bound, Eq. (3), since it
would give a heating rate that scales as N2. Thus, we use
Lieb-Robinson bounds [18] to estimate σij for remote i
and j. For two operators A; B with ∥A∥; ∥B∥ ≤ 1 and
support in regions X; Y, they read:

∥½AðtÞ; B�∥ ≤ Ce−aðr−vLRtÞ; r ¼ distðX; YÞ; ð13Þ

with vLR the Lieb-Robinson velocity and C a numerical
constant (below we always use C for numerical constants
whose value can change from line to line). We choose to
measure distances in units of the lattice spacing, and hence
a is simply a numerical constant as well. a; C; vLR are
determined by the norm and range of hi and the type of
lattice. Without loss of generality, we assume κω ≫ 1 (for
small values of κω, the bound can always be satisfied by
tuning C). We will prove the bound, Eq. (12), for δω ¼
ðδωÞ0 with some arbitrary but fixed ðδωÞ0 > 0 (we will use
in the proof that ðδωÞ0 is smaller than quantities that
diverge with ω → ∞). The bound for arbitrary δω is then
recovered as follows: For δω < ðδωÞ0, we have
σð½ω;ωþ δω�Þ ≤ σð½ω;ωþ ðδωÞ0�Þ, hence the bound.
For δω > ðδωÞ0, we dominate σð½ω;ωþ δω�Þ ≤P

k≥0σð½ωþ kðδωÞ0;ωþ ðkþ 1ÞðδωÞ0�Þ and we apply
the result for each term in the sum, so that the result
follows by readjusting C.
First, we dominate, for ω ≥ 2ðδωÞ0,

σð½ω;ωþ ðδωÞ0�Þ ≤
e

1 − e−8

Z
∞

−∞
dω0e−ðω0−ω=ðδωÞ0Þ2σðω0Þ:

ð14Þ

This relies on the positivity of σðω ≥ 0Þ and the symmetry
σð−ωÞ ¼ −σðωÞ. Then we split σðωÞ ¼ P

ijσijðωÞ in
Eq. (14) and we recast the resulting integrals in the time
domain:

Z
∞

−∞
dω0e−ðω0−ω=ðδωÞ0Þ2σijðω0Þ

¼ ffiffiffi
π

p ðδωÞ0
Z

∞

−∞
dte−ðt=δtÞ2e−iωth½OiðtÞ; Oj�iβ;

δt ¼ 2

ðδωÞ0
: ð15Þ

Our strategy is to estimate terms with distði; jÞ ≥ r�, with
r� large, using Lieb-Robinson bounds, and to bound terms
with distði; jÞ < r� using Eq. (3). We will choose r� ¼
2~κω=a with ~κ being the κ featuring in Eq. (3).
First, we study a general ði; jÞ term in Eq. (15) with

distði; jÞ ¼ r ≥ r�. We break the time integral in the rhs of
Eq. (15) into an integral over the interval ½−tc; tc� with
tc ¼ tcðrÞ ¼ r=ð2vLRÞ, and an integral over the rest of the
real axis. The former is bounded by LR bounds, Eq. (13):

����
Z

tc

−tc
dte−ðt=δtÞ2e−iωth½OiðtÞ; Oj�iβ

���� ≤ 2Ctce−ar=2; ð16Þ

and the latter is bounded using ∥½OiðtÞ; Oj�∥ ≤ 2 (since
∥Oi∥ ≤ 1):

2

����
Z

∞

tc

dte−ðt=δtÞ2e−iωth½OiðtÞ; Oj�iβ
���� ≤ 2

ffiffiffi
π

p
e−ðtc=δtÞ2δt:

ð17Þ
Using Eqs. (16) and (17) and setting δt < tc [since ðδωÞ0
is fixed and κω ≫ 1], we bound the sum over ði; jÞ with
r ≥ r� by

CNrd−1�

�
r�
vLR

e−ar�=2 þ v2LRðδtÞ3
r�

e−ðr�=2vLRδtÞ2
�
: ð18Þ

By increasing r�, the exponent in the second term becomes
at least as small as that in the first term and we can bound
Eq. (18) by

CNrd�

�
1

vLR

�
e−~κω:

This provides a bound for the contribution of remote pairs
ji − jj ≥ r� to the rhs of Eq. (15). Multiplying by

ffiffiffi
π

p ðδωÞ0
and using ðδωÞ0=vLR ≤ C, we bound their contribution to
the response function Eq. (14) by CNrd�e−~κω. There are ∼rd�
remaining terms with distði; jÞ < r�. Their contribution
to Eq. (14) can be bounded using Eq. (3), which gives
CNrd�e−~κω, as well. Recalling r� ¼ 2~κω=a, we get an
overall bound (i.e., summed over all r) of the form

CNð~κωÞde−~κω

for the response function. By slightly reducing ~κ (the
new value is called κ again) and increasing C, we get the
bound Eq. (12).
The necessity of averaging over a frequency window δω

is likely an artefact of our proof. We expect that in the
thermodynamic limit, the bounds Eqs. (3) and (12) hold for
σðωÞ itself, i.e., that the distribution is a bona fide function,
but we cannot prove this, see also Refs. [19,20] for
mathematical details and Ref. [21] for a polynomial bound
at large ω.
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Extensions.—Let us briefly comment on extensions of
our results. First, we note that in d ¼ 1 we can in fact
choose the decay rate κ to be arbitrarily large at the cost of
increasing the numerical prefactors C in Eqs. (3) and (12).
This is achieved by improving the bound in the rhs of
Eq. (7) to CðγÞe−γkk!, for any γ > 0, as described in
Refs. [22,23]. The extension for local driving is immediate
and for global driving, we then simply choose r� with a
larger ~κ. Hence in d ¼ 1, the decay is in fact super-
exponential, but one should not expect such an improve-
ment to hold in d ≥ 2 [24], nor for the case of quasilocal,
exponentially decaying Oi; hi (instead of strictly local).
It is also possible to obtain similar results as ours for

some models of lattice bosons, e.g., the Bose-Hubbard
model at high temperature, but then the exponential decay
is weakened to a stretched exponential. The key observa-
tions are that (i) the bound Eq. (7) fails trivially for
unbounded hi and one has to use a weighted norm instead
and (ii) one needs to assume (spatial) decay of correlations
for the thermal ensemble h� � �iβ (provable by cluster
expansions at high temperature) as Lieb-Robinson bounds
are no longer available, see Ref. [25].
The most important extension [25], however, is to go

beyond the linear response and to allow for general initial
states, showing that the phenomenon described here is quite
similar to localization in energy, except that, presumably,
it in general breaks down after a sufficiently long time
[10–12].
Finally, for completeness, we mention that there are two

remarkable cases where the energy localization does not
break down for long times: (1) driven MBL systems at not
too small frequencies, see Refs. [26–28] and (2) noninter-
acting fermions, i.e., with hi; Oi containing only linear and
quadratic terms in c; c†. In that case, by performing a
canonical transformation, we fall back on a one-particle
problem where exact dynamical localization is possible
[29]. In the case whereH describes noninteracting fermions
but O is of order q > 2 in the fields c; c†, we do not expect
genuine localization but still the linear response vanishes
exactly: σðωÞ ¼ 0 whenever ω exceeds the bandwidth
times q, as one sees from Eq. (5).
Discussion.—The main implication of the above results

is that, although many-body states (e.g., topological states)
in isolated, periodically driven systems are generally
metastable, they have a very long life time, if driving
frequency is much higher than the natural energy scale of
the system. We note that this limit is indeed realized in
recent experiments.
It should be kept in mind that in realistic physical

systems of fermions, the single-particle spectrum is
unbounded due to the existence of high energy continuum
states. Effective lattice models considered in this Letter
only describe low-energy properties of the system. Our
bounds can still be applied in the regime where driving
frequency is much larger than the lattice energy scales of

the system, but much smaller than the energy separation
between low-lying states and high-energy continuum
states, such that transitions to those states can be neglected.
This complication does not arise in spin systems, which
locally have a bounded Hilbert space. However, for the case
of solid-state spin systems, the presence of phonons leads
to a weaker bound, as we discussed above.
Further, we note that there has been recent interest in

dynamical localization in periodically driven many-body
systems [11,26–28,30–32]. In such studies, numerical
simulations are a useful tool. Our results imply that, in
order to observe delocalization at high driving frequency,
one may have to study the system dynamics at (exponen-
tially) long times.
Our results also can be directly applied to a different

class of problems: the decay of a highly energetic excitation
into many low-energy excitations. One physical model
where such a problem naturally arises and has been studied
is the large-U Fermi-Hubbard model,

H ¼ J
X

hiji;s¼↑;↓

c†iscjs þ U
X
i

ni↑ni↓; U ≫ J ð19Þ

where hiji denotes neighboring sites, and s is a spin label.
Doublons (doubly occupied sites) have a typical energy∼U
which is much greater than the kinetic energy J. At
temperatures T ≪ U, when there are very few doublons
in the system, one can ask how quickly doublons decay into
particle-hole pairs. This problem has been addressed
experimentally [33] and theoretically [34] using perturba-
tion theory, and the decay rates were found to be exponen-
tially small in U=J. Therefore, in this case our bound
appears to be saturated.
We note that the bound is nonperturbative in the

interaction strength of the systems, and we expect it to
be useful for other strongly interacting systems where
excitations with very different energy scales are present,
e.g., equilibration of Fermi-Fermi cold gases with very
different mass parameters, as well as random spin models
with a broad distribution of exchange couplings. For
random spin models, an exponential decay of a local spin
correlation function at high frequency has been previously
obtained using mean-field-type approximations [35,36].
Our results are consistent with this earlier study in
d > 1, but show that in one-dimensional systems the decay
at high frequency is even faster than exponential.
Conclusions.—We have proven that the dissipative part

of the linear response for local lattice systems decays
exponentially at high frequencies. In particular, this means
that heating by periodic driving will be exponentially slow.
This result provides a foundation for so-called Floquet
many-body phases by showing that, though metastable,
they will be very long-lived.
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