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A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong
interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous
charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The
surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in
agreement with recent simulation results and consistent with experimental observations of a wide array of
systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared
with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven
first-order transition.
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Recently, experimental observations and molecular sim-
ulations have suggested a link between long-range struc-
tural correlations and the electrochemical response of a
double layer capacitor composed of an ionic liquid electro-
lyte [1–3]. Specifically, these observations have alluded to a
possible singular response of the differential capacitance to
changes in the applied electric potential [4]. It has been
postulated on the basis of molecular simulations that this
response results from a competition between the entropic
effects of packing and the local constraints of electric
neutrality within the ionic liquid near a planar, constant
potential electrode [5]. Using general arguments, I con-
struct an effective field theory for a symmetric solution of
dense ionic media that validates this proposal. This theory
explains the observed anomalous capacitance as a result of
a first-order interfacial transition associated with sponta-
neous charge ordering at the electrode surface.
The interface between a dense ionic solution and a metal

electrode has been the subject of much recent study due to
the development of ionic liquid-based supercapacitors that
exploit charge separation to create high power energy
storage devices [6,7]. Such concentrated electrolyte sol-
utions exhibit interionic correlations that render typical
mean-field theories developed for dilute solutions, such
as Gouy-Chapman-Stern theory [8], not applicable.
Extensions of these theories to account for excluded
volume have been developed [9–12], which are capable
of capturing interfacial layering and a nonmonotonic
capacitance as a function of applied potential. However,
such extensions typically assume a linearly responding
charge density, which necessitates that their predicted
response functions are bounded. This contrasts molecular
dynamics simulations of a model of BMIMþPF−6 on
graphite electrodes that indicates a voltage driven structural
transition and divergent capacitance [5]. Experimental
indications of similar emergent long-ranged correlations

have been observed in many systems, including sponta-
neous two-dimensional ordering of PF6 on gold [13] and
free surfaces [14], as well as observations of hysteresis
upon voltage cycling of C9MIMþTf2N− on epitaxial
graphene [3] with observed structural bistability [15].
To explain these observations of spontaneous interfacial

ordering, I consider the implications of two competing
interactions: (1) short range repulsions that arise from
packing constraints and can favor spontaneous phase
separation, and (2) long-ranged attractions that arise from
oppositely charged species and frustrate phase separation.
For a symmetric solution, the lowest-order expansion
around a uniform charge density yields an effective
Hamiltonian,

HB½ϕðrÞ� ¼
Z
r

a
2
ϕ2ðrÞ þ uϕ4ðrÞ þm

2
j∇ϕðrÞj2

þQ2

2

Z
r

Z
r0

ϕðrÞϕðr0Þ
jr − r0j ; ð1Þ

where ϕðrÞ ¼ ½ρþðrÞ − ρ−ðrÞ�=ρ is local excess charge
density, determined by the relative density of cations,
ρþðrÞ, to anions, ρ−ðrÞ, over the mean liquid density, ρ.
While for asymmetric solutions a cubic order term is
allowed, for this simplistic case, it is unallowed by
symmetry. The effective Coulomb coupling, Q2 ¼
ðzÞ2=ϵ, is screened by the optical contribution to the
dielectric, ϵ, and z is the magnitude of the charge of the
ions. In principle, the parameters a; u, andm are dependent
on temperature and pressure, but here they are taken to all
be real constants. The parameters u and m are assumed to
be positive, as is necessary to justify the truncation in
Eq. (1), and a is assumed to be negative and small so that
there is an explicit tendency of the uncharged species to
demix. This tendency is supported by observations of
spatial clustering in many simple ionic liquids [16].
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Microscopically, the parameters a; u;m, and Q are
related to the screening and bare correlation lengths.
This relation can be clarified by computing the charge
susceptibility in momentum space,

χðkÞ ¼ ðmk2 þ aþ 2πQ2=k2Þ−1; k ≠ 0: ð2Þ
Within the random phase approximation [17,18], the Debye
screening length is identified as ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj=2πQ2

p
, and bare

correlation length as lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m=jajp

, with u ¼ 1, to set the
basic energy scale, or equivalently setting kBT ¼ 1, where
kB is Boltzmann’s constant andT is the temperature [19]. For
room temperature ionic liquids, bare correlation lengths are
expected to be on the order of the size of the molecule
[20,21]. For the BMIMþPF−6 mixture studied in previous
simulations, the mean molecular diameter is about 5 Å [22].
Typical Debye screening lengths in ionic liquids and molten
salts are between 1 and 2Å, due to their low permittivity and
large molar volume [23]. At the Gaussian level of approxi-
mation [24], the bulk phase diagram for this model includes
a phase transition from a disordered phase for ls=lc < 2
where the ϕðrÞ ¼ 0, on average, to an ordered, microphase-
separated state for ls=lc > 2 where ϕðrÞ ≠ 0, on average.
This microphase-separated state has a characteristic wave
vector, qs ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
lslc

p
, as can be deduced from the maxi-

mum in the susceptibility in Eq. (2), and arises generically
from the competition between interactions acting over
disparate scales [25]. This specific relationship between
the periodicity of charge density oscillations and the
correlation and screening lengths was also arrived at
previously [11]. In that work, however, rather than postulat-
ing an effectiveHamiltonian for the charge density, Ref. [11]
derived the expression from a modified Poisson equation.
Given that typical values of both lc and ls for ionic liquids
are Oð1Þ, at ambient conditions such liquids are thus
expected to be close to microphase separation [26]. It is
the proximity of this phase transition that leads to the
anomalous capacitive response, as will be shown below.
To analyze the interfacial behavior of this theory, a

number of simplifications must be made. First, I consider
only the case of an ionic liquid in contact with two parallel,
identical planar electrodes, a geometry that is illustrated in
Fig. 1. In this geometry, the system is symmetric in the
plane parallel to the interface; therefore, degrees of freedom
in the xy plane can be integrated out. Second, the separation
between the two electrodes is assumed to be large com-
pared to lc, so that z can be defined over the domain ð0;∞Þ
[28]. The resultant effective Hamiltonian per unit area is

~H½ϕðzÞ� ¼ ~HB½ϕðzÞ� − hϕð0Þ þ a1ϕ2ð0Þ=2; ð3Þ

where ~HB is the Hamiltonian of Eq. (1) evaluated for a
z-dependent order parameter, ϕðzÞ, divided by the area of
the system in the xy direction. The parameters, h and a1, are
phenomenological parameters that account for the modu-
lation of the fluctuations at the interface. The truncation to

second order in ϕðz ¼ 0Þ restricts the analysis to weak
interactions between the liquid and the electrode [29],
where a1 and h are both order 1, accommodating nonbond
interactions like van der Waals forces and small applied
potentials. Previous observations of ordering near free
interfaces in ionic liquids suggest that this approximation
is sufficient [14].
The field h is related to the chemical potential difference

for positive or negative charge density at the interface.
Within the assumption of weak direct surface interactions,
it is expected to be linearly related to the applied potential at
the electrode, h ∝ −Ψ [30]. For the symmetric system
considered in this Letter, terms of zeroth order in Ψ that
arise from specific chemical interactions can be neglected.
In general, local interactions can give rise to terms that
shift this dependence by a constant. Phenomenologically,
neglecting such terms is the same as setting the zero of h to
the potential of zero charge. The parameter a1 describes the
ability of the surface to modify the local interactions
between anions and cations in the electrolyte at the inter-
face and arise due to altered packing arrangements near the
weakly interacting surface.
While it is not analytically tractable to solve for the

complete partition function determined by Eq. (3), it can be
approximated by neglecting the fluctuations. The mean-
field interfacial profile is given by δ ~H=δϕ̄ðzÞ ¼ 0, where
ϕ̄ðzÞ is the order parameter profile that minimizes the
effective Hamiltonian. The resultant Euler-Lagrange
equation determines the form of the profile,

aϕ̄ðzÞ −m∇2ϕ̄ðzÞ þ 2πQ2

Z
ϕ̄ðz0Þjz − z0j ¼ 0: ð4Þ

z

FIG. 1 (color online). Geometry and composition of the
capacitive cell considered in this Letter, namely, two ideal parallel
plates are separated in the z direction by a solution of nearly
symmetric ionic liquid. Under applied potential, decaying charge
density waves spontaneously form near the interface. The call out
contains a snapshot of a typical room temperature ionic liquid
taken from a molecular dynamics simulation.
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For conditions near the bulk phase transition, the solution
away from the boundary is homogeneous and the free
energy is minimized by ϕ̄ðzÞ ¼ 0. Thus, for small h and
ls=lc close to 2, it is sufficient to linearize Eq. (4) by
dropping a term proportional to ϕ̄3ðzÞ.
The integro-differential equation, together with the

boundary condition from the surface terms in Eq. (3),

−hþ a1ϕ̄ðzÞ −m∂zϕ̄ðzÞ ¼ 0; z ¼ 0; ð5Þ
the condition that the bulk is homogenous,

∂zϕ̄ðzÞ ¼ 0; z → ∞; ð6Þ
and the constraint of electroneutrality,

R
r ϕðrÞ ¼ 0, are

sufficient to determine a unique profile for the charge
density away from the electrode. The solution of this
equation with these boundary conditions has the form of
a damped harmonic function [29],

ϕ̄ðzÞ ¼ ϕs

cos θ
e−z=lc cos ðzqs þ θÞ; ð7Þ

where tan θ ¼ 1=qslc, and ϕs is the value of the charge
density at the surface of the electrode. The functional form
of Eq. (7) is routinely used to fit experimental data [21], and
it exhibits charge oscillations, or “overscreening” [31],
which arise from the finite size of the ions. Figure 2 shows
representative charge density distributions for three differ-
ent values of ls=lc. For fixed lc and decreasing ls=lc, the
profile shows increased layering as a consequence of
approaching the bulk phase transition.
While the form of the charge density distribution does

not change at subsequent levels of approximation or with
the incorporation of a cubic term in Eq. (1), the dependence
of ϕs on the external field does. Within mean-field theory
and for symmetric mixtures, the surface order parameter
decreases smoothly as the magnitude of the external field
goes to zero, with the functional form

ϕMF
s ¼ h

mð2=lc þ 1=λÞ ; ð8Þ

where λ ¼ a1=m is the extrapolation length typically
encountered in surface criticality [32]. Within a self-
consistent Hartree approximation [33,34], the surface order
parameter is renormalized, ϕH

s ¼ ϕMF
s

ffiffiffi
Γ

p
, where Γ is a

strictly positive function of a; u, and qs [35]. As the
external field passes through 0, ϕH

s changes discontinu-
ously, reflecting the renormalization of the order of the
phase transition [36]. This discontinuous change of ϕH

s
signals a first-order interfacial transition and produces long-
ranged order in a lc thick slab parallel to the electrode,
commensurate with the amplitude of the charge density
wave away from the interface remaining finite for h → 0.
This symmetry breaking within the plane of the electrode is
consistent with the onset of 2D crystallization of PF−6 ions
accompanying the microphase separation observed in
molecular simulations [5]. It also explains observations
of hysteresis upon electrode charging [3], as nucleating
domains of charge density near the electrode surface will
require times proportional to lcqs [34] that are large at the
transition.
From Poisson’s equation and the charge density in

Eq. (7), the double layer capacitance can be computed.
Specifically, the applied potential is equated to the potential
at the surface of the electrode by integrating Eq. (7) twice
[37]. The capacitance at the potential of zero charge is
given by a sum of three contributions,

C=2ϵ ¼ 1

ls
þ 1

lc
þ lc

dϕs

dh

����
h¼0þ

; ð9Þ

where the first two terms are expected from ideal
solutions—namely, the contribution from standard Gouy-
Chapman theory that is proportional to the inverse of the
Debye screening length, and the Stern contribution that is
proportional to the inverse of the correlation length. The
last term is proportional to the surface susceptibility and is
singular at an interfacial phase transition, as anticipated
from molecular dynamics results [5]. Equation (9) estab-
lishes the relationship between electrolyte fluctuations
parallel to the electrode and the electrochemical response.
Away from the surface phase transition, the capacitance is
found to scale as C ∝ ΔΨ−1=2, as found previously [11].
While typical electrostatic calculations anticipate a

bounded capacitance at finite temperature [11,38], viewed
from the perspective of classical statistical mechanics, the
potentially unbounded capacitance is a consequence of
diverging correlation lengths encountered at a phase
transition and their relationship to fluctuation and response
quantities like the differential capacitance [39]. Such
collective behavior is reminiscent of charging batteries,
where ion intercalation can couple to elastic modes of an
electrode, resulting in discontinuous changes in accumu-
lated charge [40]. For the first-order transition found here,
the capacitance is expected to diverge at the location of the
surface ordering transition. For negative values of λ, the
surface can order away from the bulk transition [41].

FIG. 2 (color online). Charge density profiles, given by Eq. (7),
for various ratios of ls=lc ¼ 1.5 (the blue line), 0.3 (the black
line), and 0.07 (the red line) and infinitesimal field h > 0.
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Specifically, by equating the surface free energies of the
ordered and disordered phases, coexistence conditions are
found at h → 0 and a critical value of λ ¼ λ�, which is
λ� ¼ −4ðlc þ 1Þ=l2

c in the mean-field case and must be
solved numerically for the Hartree approximation, though
λ� < −ð ffiffiffi

2
p

− 1Þ=lc [32]. This interfacial ordering away
from the bulk transition is similar to that found in other
modulated phases, such as block copolymers [42] and
ferroelectrics [41,43].
To check the robustness of the approximations employed

above, explicit simulations of a discretized version of the
system defined by the Hamiltonian in Eq. (1) are carried
out. Specifically, I study a three-dimensional charge frus-
trated Ising model [44] defined by

H½fsg� ¼ −
X
hi;ji

sisj þ
q2

2

X
i≠j

vðrijÞsisj; ð10Þ

where q is a reduced charge, fsg denotes the vector of
Ising-like variables, si ¼ f0;�1g, the bracket hi; ji denotes
a restriction over distinct nearest neighbor pairs, rij is the
distance between sites i and j on a three-dimensional cubic
lattice, and vðrÞ is a Coulomb interaction evaluated only on
those lattice sites that asymptotically approaches 1=jrj as
jrj → ∞. The presence of the competing long- and short
ranged interactions yields bulk phase transitions in the
same universality class as the Hamiltonian in Eq. (1) [45],
only with discrete states.
Consistent with the conditions of typical room temper-

ature ionic liquids, I simulate a confined system in a region
of the phase diagram where the bulk is disordered, but close
to the first-order transition into a charge density wave
phase. The bulk phase diagram for the fully occupied
charge neutral case, jsij ¼ 1, has been determined from
mean-field theory and explicit simulation [46]. Simulations
are run at q ¼ 1 and kBT ¼ 1.2. The simulation is
embedded in an L2 × Lz volume, with periodic boundary
conditions in the xy plane and noninteracting but con-
ducting boundary conditions along the z direction [47].
These boundary conditions explicitly generate image
charges that have been neglected in the theoretical analysis
but that can screen ion-ion interactions. A natural order
parameter that distinguishes a spontaneously polarized
interfacial region from a homogeneous bulk is the amount
of charge in the layer adjacent to the interface,
Ŝ ¼ P

isiδðẑ · riÞ, which is extensive in the area of the
interface, L2, and approaches �L2 in the limit that the
interface is filled by positive or negative charges. This order
parameter is analogous to the amplitude of the charge
density wave at the electrode in the continuum limit, ϕs.
Similarly, a divergent susceptibility of S to an external field
signals an interfacial phase transition and is accompanied
by a singular capacitance.
Using an extension of Wang-Landau sampling [48], I

compute the relative free energy,

FðSÞ=kBT ¼ − ln

�
δ

�
S −

X
i

siδ½ẑ · ri�
��

; ð11Þ

where h� � �i denotes an ensemble average with fixed ions,
temperature, and cell volume. The results of these calcu-
lations are shown in Fig. 3. Each free energy curve displays
two symmetric minima centered about �0.7, with a large
free energy barrier in between. The height of the barrier,
ΔF, defined as the difference between the local maximum
of free energy between −0.5 < S=L2 < 0.5 and its global
minimum value near S=L2 ¼ �0.7, is plotted in Fig. 3(d)
for various system sizes. As expected for a first-order
transition in 2D, this barrier scales linearly with L and leads
to a voltage dependent capacitance that diverges as L2. For
this symmetric solution, the symmetry breaking occurs
with an infinitesimal applied field.
Conclusion.—I have shown how an effective field theory

for the coarse-grained properties of an ionic liquid–metal
interface can yield insight into the structural changes and
responses that occur under applied voltage. By incorpo-
rating additional terms into the order parameter expansion
[32] or explicit image charges at the boundaries [38], the
theory could be generalized to nonsymmetric mixtures as
well as strong direct interactions within the interface. By
adopting the perspective of the capacitance as a fluctuation
quantity [39], its relation to long-ranged correlations within
the ionic liquid becomes transparent. With simple theory

FIG. 3 (color online). Finite size scaling analysis for the lattice
model defined in Eq. (10). (a) Free energies of the accumulated
charge density within the layer nearest the electrode for various
electrode areas of linear size L ¼ 5–16. (b),(c) Typical configu-
rations of the charge density, where grey locates the free
boundary, si ¼ 0. (d) Free energy barrier for inverting the surface
charge as a function of linear electrode size. Lines are guides for
the eye and error bars are the size of the symbols.
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and numerical simulation, the potential singular behavior of
the capacitance at a surface phase transition is elucidated.
This Letter highlights the importance of explicitly incor-
porating nonlinear behavior that arises from interionic
correlations.
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