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Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains
characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is
sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed
forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and
experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well
as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite
the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-
envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle.
We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations.
In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss
shapes are still approximately preserved during propagation.
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The spreading of pulses in a dispersive medium is a
universal property of waves. Gravity waves on the surface
of deep water can be seen as an important example of a
strongly dispersive wave system. As long as the wave’s
amplitude remains low, its evolution is adequately described
by linear equations. However, for higher wave steepness,
nonlinearity becomes essential. The nonlinear Schrödinger
(NLS) equation [1], applicable for description of diverse
nonlinear physical phenomena, is the simplest model
describing evolution of narrow-banded waves in deep water.
This equation attracts special interest since it admits
localized solutions such as the so-called Kuznetsov-Ma
breathing solitons [2,3], the Akhmediev breather [4], and
the Peregrine breather [5]. Recently, there were numerous
attempts to observe different types of breathers experimen-
tally; see Refs. [6–9], among others.
In contrast to self-focusing nonlinear wave packets

propagating along an experimental facility, here the ques-
tion we address is whether nondispersive solutions of the
linearized wave equation can be sustained along the water
tank. In addition, we test the robustness of this solution in
the nonlinear regime.
In optics, linearly nonspreading wave packets have been

extensively investigated. Bessel beams, exact diffraction-
free solutions of the Helmholtz equation in cylindrical
coordinates, were introduced by Durnin et al. [10,11]. In
Cartesian coordinates, similar solution of a nondiffracting
cosine beam can also be found from this equation [12].
Recently, cosine beams were applied for realizing
a nondiffracting plasmonic beam having a Gaussian
envelope [13,14]. In addition to these nondiffracting
beams propagating in a straight line, another example of

a nondiffracting beam is the self-accelerating Airy beam,
which was first suggested in the framework of quantum
mechanics [15] and has been realized in optics [16]. A
spatiotemporal wave packet that preserves its shape both in
space and in time was also realized by combining a Bessel
beam with an Airy pulse [17]. Because of their unique
property, the research on nonspreading wave packets draws
much attention, and many applications were demonstrated
in numerous fields [18–20]. We note that nondiffracting
beams have been extended to many physical systems such
as surface plasmonics [13,21–23], acoustics [24,25], and
electronics [26–28], described by the formally identical
wave equations. Although self-accelerating Airy wave
pulses and beams were recently reported in a water wave
[29,30], to date, there is no report on the generation of
nonaccelerating and nonspreading water wave packets.
In this Letter, we extend optical theory of nondiffracting

beams to hydrodynamics and demonstrate both theoretically
and experimentally a new family of surface gravity water
waves, i.e., cosine-Gauss (CG) and Hermite cosine-Gauss
(HCG) waves, which can resist the inherent dispersion
during propagation without nonlinearity. Such an extension
is possible since wave propagation dynamics in optics and
hydrodynamics is analogous in many aspects [29,31,32].
Even though CG waves were previously demonstrated
[12–14], to our knowledge, its higher-order versions have
not been reported experimentally in any physical system. In
addition to the first realization of nonspreading CG water
waves, this Letter also addresses the nondispersive property
of their higher-order solutions, as well as the effect of
nonlinearity on these waves. Our analysis is based on the
modified nonlinear Schrödinger equation [33], in which the
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limitation on the spectral width in the NLS is relaxed.
Following Refs. [34–36], the spatial version of the nonlinear
equation in its normalized form is given by

∂A
∂ξ þ i

∂2A
∂τ2 þ ijAj2Aþ 8εjAj2 ∂A∂τ þ 2εA2

∂A�

∂τ
þ 4iεA

∂Φ
∂τ

�
�
�
�
Z¼0

¼ 0;

4
∂2Φ
∂τ2 þ ∂2Φ

∂Z2
¼ 0; Z < 0: ð1Þ

The scaled dimensionless variables are related to the
physical units as ξ¼ ε2k0x, τ¼ εω0ðx=cg− tÞ, A ¼ a=a0,
Φ ¼ ϕ=ðω0a20Þ, and Z ¼ εk0z. Here, x and z denote
the longitudinal and vertical coordinates, where z ¼ 0 at
undisturbed water surface, t is time, ε ¼ k0a0 is the
characteristic wave steepness, where a0 is amplitude, and
k0 ¼ 2π=λ0 is the carrier wave number, with λ0 being the
wavelength. The angular frequency ω0 satisfies the
dispersion relation ω2

0 ¼ gk0, where g is the gravity accel-
eration. The group velocity is cg ¼ ω0=ð2k0Þ. The velocity
potential Φ is subjected to boundary conditions ∂Φ=∂Z ¼
∂jAj2=∂τ (Z ¼ 0) and ∂Φ=∂Z ¼ 0 (Z → −∞).
In this work, we first investigate the generation and

propagation dynamics of CG pulses in the linear regime
with a sufficiently low amplitude, and then investigate the
robustness of these pulses under appreciable nonlinearity.
Retaining linear terms only in Eq. (1) yields

∂A
∂ξ þ i

∂2A
∂τ2 ¼ 0: ð2Þ

To look for a nonspreading cosine-Gauss solution, we
assume Aðx ¼ 0; tÞ ¼ cos½ω0t sinðθÞ� expð−t2=t20Þ [13],
where θ is a half-intersecting angle of two plane waves
truncated by a Gaussian envelope of finite duration t0.
Integrating Eq. (2) with this initial condition, we find
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is envelope amplitude and phase, respectively. Here, T ¼
fðεω0t0Þ2 þ ½4ξ=ðεω0t0Þ�2g1=2 and S¼ sinðθÞ=εf1−16ξ2=
½ðεω0t0Þ4þ16ξ2�g. Equation (3) shows that these two
finite energy waves are gradually separated in time during

propagation. However, with proper parameters and small θ,
S ≈ sinðθÞ=ε becomes constant and 2 sinðθÞξ=ε ≪ T, so
that these two truncated waves approximately overlap
during propagation over a limited distance, giving rise to
the nonspreading CG wave.
Experiments were performed in an 18-m-long, 1.2-m-

wide, and h ¼ 0.6-m-deep wave tank illustrated in Fig. 1.
Surface CG waves were generated by means of a computer-
controlled paddle-type wave maker placed at one end of the
tank; see Fig. 1. An absorbing beach was placed at the other
end. To avoid any influence of the beach, measurements
were performed up to distances of 14 m from the wave
maker. The surface elevation at any fixed location along the
tank was measured by 4 wave gauges mounted on a bar
parallel to propagation direction. The temporal surface
elevation at the wave maker has the following form:

ηðx ¼ 0; tÞ ¼ a0Aðx ¼ 0; tÞ cosðω0tÞ: ð4Þ

For the selected wavelength λ0 ¼ 0.76 m, the dimension-
less depth k0h ¼ 4.96 > π [37] satisfies the deep-water
condition. Note that wave dissipation can be neglected [37]
for this wavelength.
Figure 2(a) shows a straightforward way for generating a

CG pulse, by launching two plane waves at an angle θ.
These waves are truncated by a Gaussian envelope of finite
duration t0. The resultant field is characterized by Eq. (3).
Because of the truncation, the obtained CG pulse preserves
the nonspreading property over a finite distance xmax,
estimated as xmax ≈ cgt0= tanðθÞ. As an example, given
t0 ¼ 9 s and θ ¼ 7.5°, we have xmax ≈ 37 m with
S ≈ sinðθÞ=ε. Typical examples of CG pulses at x ¼ 0
are illustrated in Figs. 2(b)–2(d) at a different θ. It is evident
that the fringe distance decreases when increasing θ, as
shown analytically by

σðθÞ ¼ 0.36π
ω0 sinðθÞ

; ð5Þ

where σ is the square root of the second-order moment [38].
Figure 2(e) shows this variation σ as a function of θ, in
good agreement with the experiment; see calculations in
Sec. (a) of Supplemental Material [39].

FIG. 1 (color online). Schematic illustration of the experimental
setup for generating cosine-Gauss water-wave pulses.
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Figure 3 demonstrates both experimentally and
theoretically the nonspreading feature of the generated
CG pulses. In experiment, we set t0 ¼ 9 s. As a result,
the nonspreading region can be expected to cover the
whole tank. To reduce nonlinear effects, amplitude was set

to a0 ¼ 6 mm (ε ¼ 0.05). The propagation dynamics of
CG pulses with θ ¼ 5.5° and 7.5° were investigated; see
Figs. 3(a) and 3(c), respectively. Note that more narrow side
lobes were observed with larger θ. Both figures present the
measurements of the envelope evolution obtained by the
Hilbert transform of wave elevation records. To illustrate
this nonspreading property in a straight vertical line, the
recorded elevations were represented in a system traveling
at the group velocity cg. As expected, these CG pulses resist
the dispersion-induced broadening during propagation,
preserving their symmetric CG shapes. The nondispersive
property is further confirmed by the experimental and
theoretical elevations at x ¼ 1 and 10 m; see Figs. 3(b) and
3(d) in both cases. In comparison, a Gaussian pulse having
the same initial size as in Fig. 3(a) was considered; see
Figs. 3(e) and 3(f). It was observed that, due to inherent
dispersion, this pulse is considerably expanding while
propagating along the tank. The variation σ of CG and
Gaussian pulses along the tank was also measured; see
Sec. (a) of Supplemental Material [39].
It was reported that by extracting the local maximum and

minimum values of the elevation the envelope phase can be
demodulated [29]. Here, we presented a different method
based on Hilbert transform to directly measure the induced
envelope phase variation. To demonstrate this, we recorded
wave elevation ηj at two specific locations xj (j ¼ 1; 2),
with η1 being the reference. The induced envelope phase ψ
can be determined by their phase difference; see detailed
calculations in Sec. (d) of Supplemental Material [39].
Using this method, we measured the evolutions of envelope
phase ψ illustrated in Fig. 4 with two different θ, within
an accuracy of cosðψÞ � 0.2. It demonstrates in both cases
that for a fixed location ψ changes very slowly with time,
accompanied by a phase offset that has a nonlinear
dependence on the location [see Eq. (3)]. We attribute this
phenomenon to the nonspreading feature of CG pulses,

FIG. 3 (color online). Propagation dynamics of CG pulses
along the tank with a0 ¼ 6 mm, t0 ¼ 9 s, and θ ¼ 5.5° (a),(b)
and θ ¼ 7.5° (c),(d). (a),(c) Experimental measurements of pulse
envelopes obtained by Hilbert transform, while (b),(d) show
temporal elevations at two locations. (e),(f) Gaussian pulse
evolution. The Gaussian pulse initial size is the same as (a).

FIG. 4 (color online). The measured carrier-envelope phase ψ
of CG pulses with a0 ¼ 6 mm, t0 ¼ 9 s, and θ ¼ 5.5° (a),(c)
and θ ¼ 7.5° (b),(d). Measurements were performed at (a),(b)
x ¼ 1 m and (c),(d) x ¼ 10 m. Red symbols and blue curves
correspond to experiment and theory [based on Eq. (3)].

FIG. 2 (color online). (a) A schematic representing the
CG pulse as a superposition of two truncated plane waves.
(b)–(d) Examples for pulse profiles at x ¼ 0 with t0 ¼ 9 s:
(b) θ ¼ 5.5°; (c) θ ¼ 7.5°; (d) θ ¼ 9.5°. (e) Square root of
second-order moment of the central lobe, as a function of θ.
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generated by interfering two Gaussian waves at a small
intersection angle. A slight difference between the experi-
ment and theory resulted from small deviation of the
elevation generated by the wave maker, as compared with
the theory.
We examined the self-healing property of the cosine-

Gauss pulse experimentally and numerically; see Sec. (b) in
Ref. [39]. We found that these wave packets can be restored
after bypassing an obstacle. Interestingly, those cosine-
Gauss pulses could also be realized dynamically by
utilizing two propagating Gaussian pulses; see Sec. (c)
in Ref. [39] for more detail.
We further extended the concept of CG pulses to their

higher-order forms with Hermite CG envelopes. In the
experiment, the pattern produced at x ¼ 0 is replaced by the
HCG function

Aðx ¼ 0; tÞ ¼ Hm

� ffiffiffi

2
p

t
t0

�

cos½ω0t sinðθÞ� exp
�

−
t2

t20

�

; ð6Þ

where Hm (m ¼ 1; 2) represents the Hermite polynomial
of order m. In this case, Aðx ¼ 0; tÞ is normalized to unity,
so that a0 is the maximum amplitude of the envelope.
Experimental and numerical results for the evolution
dynamics of these HCG pulses are presented in Fig. 5.
Clearly, these higher-order pulses also exhibit the non-
spreading property and preserve their symmetric HCG
shapes, which was observed from both the envelope
evolutions [see Figs. 5(a) and 5(c)] and elevations [see
Figs. 5(b) and 5(d)]. Owing to the limited value of t0, fewer
side lobes were generated. As a consequence, these side
lobes as well as the central lobe in Fig. 5(c) become more
dispersive during propagation, but the main lobes, see the
arrows in Figs. 5(a) and 5(c), are nearly nondispersive,
keeping their width unchanged. Theoretically, the width of

the main lobes of CG and HCG pulses should be the same,
described by Eq. (5). We confirm this assertion by
measuring their square root σ; see calculations in
Sec. (a) in Ref. [39].
Finally, we examined the robustness of CG water waves

to nonlinear perturbations. To date, the research on cosine-
Gauss waves was limited only to the linear approximation
[13,14] and their propagation dynamics in a nonlinear
dispersive medium was never explored. Our nonlinear
study of CG pulses is based on the modified NLS equation,
i.e., Eq. (1) for the HG0 and HG1 envelopes. Whereas the
HCG0 wave maintains maximum intensity at the center of
the pulse, the HCG1 pulse has zero intensity at the center,
but preserves the two strong nearby peaks at the leading
and trailing edges of the pulse; see Fig. 6. For a weakly
nonlinear amplitude of a0 ¼ 16 mm (ε ¼ 0.13), see
Figs. 6(a) and 6(e), it was found that the invariant
propagation of such HCG pulses was still observed despite
weak nonlinearity. Moreover, these HCG pulses become
more stable: the lower amplitude side lobes become
less dispersive, as compared with the linear regime [see
Figs. 3(c) and 5(a)]. The pulse dispersion from the side
lobes was compensated by the weak focusing nonlinearity.
Surprisingly, for a high amplitude a0 ¼ 26 mm (ε ¼ 0.22),
see Figs. 6(c) and 6(g), despite the slight symmetry
breaking of its temporal distribution, HCG pulses still
maintain their general shapes while propagating along
the tank. This behavior is very different from the self-
accelerating Airy wave, in which for high nonlinearity the
wave packet becomes unstable as it breaks and solitons
emerge at directions that are different from the original
wave trajectory [29,40,41]. We note that a slight asym-
metric distribution of HCG pulses arises from the contri-
bution of two quadratic nonlinear terms of Eq. (1). We
compared experimental results with simulations, showing a
good correspondence; see Figs. 6(b) and 6(f) and Figs. 6(d)
and 6(h), respectively.

FIG. 5 (color online). Propagation dynamics of HCG pulses
with t0 ¼ 9 s, θ ¼ 5.5°, and a0 ¼ 6 mm. (a),(b) m ¼ 1 and (c),
(d) m ¼ 2. (a),(c) The experimental measurements of pulse
envelopes, while (b),(d) show the corresponding elevations.

FIG. 6 (color online). Nonlinear propagation dynamics of
HCG0 (a)–(d) and HCG1 (e)–(h) pulses for two typical ampli-
tudes (see the top), with parameters (a)–(d) t0 ¼ 9 s, θ ¼ 7.5° and
(e)–(h) t0 ¼ 9 s, θ ¼ 5.5°. Both the experiments and simulations
[based on Eq. (1)] show pulse envelope evolutions along the tank.
The color bar units are millimeters.
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In conclusion, we extended the concept of optical
nondiffracting wave packets to hydrodynamics and gen-
erated a new type of linearly nondispersive water waves. In
addition to the water-wave Airy pulses [29], this is another
kind of linearly nonspreading wave packets, preserving
their shapes along a straight line. Their nonspreading and
self-healing [39] properties, as well as carrier-envelope
phase evolution, were studied in detail. Furthermore, we
studied the stability of CG pulses to the nonlinear pertur-
bations. We found that HCG waves are very robust to weak
nonlinear perturbations, and exhibit slight symmetry break-
ing in the strong nonlinear regime. This property is not
limited to our experimental facility. In a general case, our
numerical simulation indicates that these waves could
approximately preserve their general shapes across the
entire nonspreading region even with stronger nonlinear
perturbations, characterized by a scaled distance of ξ ¼ 9.9.
Owing to the similar wave nature, we anticipate that these
results will motivate intriguing studies of such nonspread-
ing wave packets in other physical systems such as
electronics [26], acoustics [24], and plasma waves [13,14].
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