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Chaotic eigenstates of quantum systems are known to localize on either side of a classical partial
transport barrier if the flux connecting the two sides is quantum mechanically not resolved due to
Heisenberg’s uncertainty. Surprisingly, in open systems with escape chaotic resonance states can localize
even if the flux is quantum mechanically resolved. We explain this using the concept of conditionally
invariant measures from classical dynamical systems by introducing a new quantum mechanically relevant
class of such fractal measures. We numerically find quantum-to-classical correspondence for localization
transitions depending on the openness of the system and on the decay rate of resonance states.
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Localization of quantum eigenstates and wave packets is
of fundamental importance for the physics of transport and
appears for a variety of reasons, e.g., strong localization
due to disorder [1], weak localization due to time-reversal
symmetry [2], localized edge states due to topological
protection [3], or localization due to classically restrictive
phase-space structures [4]. In the latter case, the localiza-
tion can originate from impenetrable barriers of regular
motion or partial transport barriers with a small trans-
mission given by a flux Φ within a chaotic region [4–11].
Such partial barriers are ubiquitous in the chaotic region
of generic two degree-of-freedom Hamiltonian systems
[5,6,9] and a universal localization transition was found
[12]. Chaotic eigenstates of the system typically localize on
either side of a partial barrier if the transmission region is
quantum mechanically not resolved, i.e., if the classical
flux Φ across the partial barrier is much smaller than the
size h of Planck’s cell (Φ ≪ h). If the transmission region is
quantum mechanically resolved (h ≪ Φ), eigenstates are
equipartitioned in the chaotic component, thereby ignoring
the presence of the partial barrier.
In contrast, in open Hamiltonian systems which allow for

escape [13–23], chaotic resonance states exhibit localiza-
tion in the presence of a partial barrier surprisingly even in
the semiclassical regime (h ≪ Φ) [24]. Such a localized
state is shown in Fig. 1, upper right, by its Husimi phase-
space representation. This demonstrates that in open
systems the influence of partial barriers on localization
and transport properties is even more substantial than in
closed systems. A thorough understanding of this locali-
zation phenomenon remains open, so far. A prominent
application are optical microcavities, where the emission
patterns are governed by the localization of eigenmodes
[25–33]. For their design, it is particularly important to
know whether a partial barrier is desired to enhance
localization or whether it should be avoided. The locali-
zation phenomenon may also have relevance in many other

areas of physics, such as transport through quantum dots
[34], ionization of driven Rydberg atoms [35], and micro-
wave cavities [36].
Since the localization appears in a semiclassical regime

(h ≪ Φ), one may wonder if it has a classical origin. Thus,
one needs the classical counterpart of a quantum resonance
state. This is given in the field of open dynamical systems
[13,37–44] by a conditionally invariant measure (CIM). It
is invariant under time evolution up to an exponential decay

FIG. 1 (color online). Weight ∥P1ψγ∥2 (symbols) of resonance
states in region A1 vs ratio of size jΩj of opening and flux Φ
across a partial barrier for different parameters of the partial-
barrier standard map (16 ≤ Φ=h; jΩj=h ≤ 2048; jA1j ¼ 0.5;
h ¼ 1=6000). Weight of state with γ closest to γnat (red points)
and averaged over states with decay rates γ ∈ ½γnat=1.1; 1.1 γnat�
(black crosses). This is compared to the natural CIM μnatðA1Þ
[Eq. (4), solid green line]. Inset: Phase space of the partial-barrier
map, illustrating regions A1, A2 on either side of the partial
barrier (solid magenta line) with exchanging regions Φ1, Φ2,
and opening Ω. Upper panels: Husimi representation of typical
resonance states with γ ≈ γnat for h ¼ 1=1000, Φ=h ¼ 20, and
two values jΩj=Φ indicated by arrows.
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with rate γ. The asymptotic decay of generic initial phase-
space distributions leads to the so-called natural CIM μnat
with decay rate γnat. The quantum-mechanical relevance
of μnat is shown in [13–15,27,41]. Note that the steady
probability distribution introduced in the context of optical
microcavities [27] corresponds to μnat. The natural CIM μnat
for the single decay rate γnat, however, cannot be the
classical counterpart for all quantum resonance states as
they have a wide range of decay rates (see, e.g., Fig. 2).
Exceptional CIMs with decay rate γ different from γnat have
been discussed [40,41]. In fact, for each γ one can construct
infinitely many CIMs. It is an open question which of
these CIMs correspond to quantum resonance states for
arbitrary γ. To answer this question one has to go beyond
the important results of Ref. [18] which relate the total
weight of a resonance state on each forward escaping set to
its decay rate.
In this Letter, we introduce the quantum mechanically

relevant class of CIMs. Their localization explains the
localization of chaotic resonance states in the presence of a
partial barrier. In particular, we find (i) a transition from
equipartition to localization when opening the system,
Fig. 1, and (ii) a transition from localization on one side
of the partial barrier to localization on the other side for
resonance states with increasing decay rate, Fig. 2. We
numerically demonstrate quantum-to-classical correspon-
dence for a designed partial-barrier map and the generic
standard map.
Partial-barrier map.—We design a chaotic model map

with a single partial barrier (similar to Ref. [24]), which
allows for numerically varying the flux across the partial
barrier and for deriving the classical localization, Eq. (4).

The partial-barrier map T ¼ M∘E∘O is a composition of
three maps: the map M describes the unconnected chaotic
dynamics within two regions, Ak. They decompose the
phase space Γ ¼ ½0; 1Þ × ½0; 1Þ into A1 ¼ ½0; jA1jÞ × ½0; 1Þ
and its complement A2 ¼ ΓnA1; see the inset in Fig. 1,
where jA1j denotes the area of A1 and by normalization,
jA2j ¼ 1 − jA1j. The map E induces a flux Φ between A1

and A2 by exchanging regions Φk ⊂ Ak with jΦkj ¼ Φ.
The map O opens the system by the absorbing region Ω,
which is contained in region A1.
We introduce two different dynamics for M. For the

numerical analysis, we use the generic standard map [45]
on the torus in symmetrized form, qtþ1 ¼ qt þ p�

t ,
ptþ1 ¼ p�

t þ vðqtþ1Þ with p�
t ¼ pt þ vðqtÞ for vðqÞ ¼

ðκ=4πÞ sinð2πqÞ acting individually on each of the regions
Ak after appropriate rescaling. We fix κ ¼ 10 where the
standard map displays a fully chaotic phase space. For
analytical considerations, we use the ternary Baker map in
each region Ak, as illustrated in Fig. 3(a), which allows for
the derivation of Eq. (4). We refer to the corresponding
maps T as partial-barrier standard map and partial-barrier
Baker map, respectively.
Quantum localization transitions.—Let us consider the

quantization U of the partial-barrier standard map T. From
the eigenvalue problem for U,

Uψγ ¼ e−γ=2eiθψγ; ð1Þ

we numerically compute the decay rates γ, describing the
temporal decay of the norm, ∥Utψγ∥2 ¼ e−γt, and the
corresponding resonance states ψγ (the phase θ is not
relevant in the following). The absolute weight of ψγ in
region A1 is given by ∥P1ψγ∥2, where P1 denotes the
projection onto the subspace associated to A1. We observe
(i) a transition from equipartition to localization on A2 for
increasing size jΩj of the opening, see Fig. 1, and (ii) a
transition from localization on A2 to localization on A1 for
increasing γ, see Fig. 2. Transition (i) is surprising as
localization occurs for h ≪ Φ, where in the closed system
all eigenstates are equipartitioned [12]. Transition (ii) shows
that in open systems the localization depends on the decay
rate γ.
In Fig. 1, we focus on resonances with decay rate

γ ≈ γnat, which describes the decay of typical long-lived
resonance states in the semiclassical limit. We find tran-
sition (i) from equipartition, ∥P1ψγ∥2 ¼ jA1j, for jΩj ≪ Φ
to localization on A2 for jΩj ≫ Φ for various values of Φ=h
and jΩj=h. The transition is universal with the scaling
parameter jΩj=Φ. Moreover, this even holds for individual
states without averaging (red dots). We stress that this
localization transition in the open system occurs even
though Φ=h ≥ 10, where in the closed system all eigen-
states are equipartitioned [12].
In Fig. 2, we fix the parameters such that jΩj ≫ Φ, for

which the long-lived resonance states localize on A2, and

FIG. 2 (color online). Weight ∥P1ψγ∥2 (red points) of reso-
nance states ψγ in region A1 vs decay rate γ for the partial-
barrier standard map (Φ=h ¼ 64; jΩj=h ¼ 1024; jA1j ¼ 0.5;
h ¼ 1=6000). This is compared to the γ-natural CIM μγðA1Þ
[Eq. (4), solid green line]. Upper panels: Husimi representation of
typical long-lived (left) and short-lived (right) resonance state for
h ¼ 1=1000 with γ values indicated by arrows.
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show the γ dependence of the weights ∥P1ψγ∥2 for all
resonance states. We find transition (ii) from resonance
states which localize on A2 for small γ to resonance states
which localize on A1 for large γ, including equipartitioned
resonance states in between.
The fact that both transitions (i) and (ii) occur for h ≪ Φ

suggests that the localization transitions could be of
classical origin. Furthermore, from the point of view of
decaying classical distributions, the observed transitions
qualitatively seem to be rather intuitive: in Fig. 1, for a
larger size of the opening one has less weight in region A1.
In Fig. 2, a larger weight in A1 corresponds to a larger decay
rate. For a quantitative description, however, one needs to
find the quantum mechanically relevant class of CIMs.
Classical localization.—A CIM μγ is defined by

μγ½T−1ðXÞ� ¼ e−γμγðXÞ; ð2Þ
for each measurable subset X of phase space. It is invariant
under the classical iterative dynamics T of the open system
up to an exponential decay with rate γ. Equation (2) states
that the measure μγ½T−1ðXÞ� of the set T−1ðXÞ that will be
mapped to X is smaller than μγðXÞ by the factor e−γ. These
measures must be zero on the iterates of the opening Ω.
Thus, the support of μγ is the fractal backward trapped set
Γb [horizontal black stripes in Fig. 3(b)], that is the set of
points in phase space which do not escape under backward

time evolution. Particularly important is the natural CIM
μnat, see Fig. 3(c), which is constant on its support [because
of integration over boxes in Fig. 3(c) one finds two nonzero
box measures].
We now generalize μnat to a CIM μγ of arbitrary decay

rate γ, which we call γ-natural CIM. To this end, we use a
construction of CIMs [40,41] where one starts with an
arbitrary probability measure on the intersection Ω∩Γb of
the opening Ω with the backward trapped set Γb. By
propagating this measure backwards to all forward escap-
ing sets T−nðΩÞ [vertical colored stripes in Fig. 3(b)] and
appropriate scaling [respecting the decay rate γ, Eq. (2)]
one obtains a CIM. Here, we choose the simplest measure
on Ω∩Γb, given by μnat. This choice of a measure, which is
constant on its support, is quantum mechanically motivated
in analogy to quantum ergodicity for closed fully chaotic
systems, where eigenstates in the semiclassical limit
approach the constant invariant measure [46,47]. This
choice leads to the γ-natural CIM

μγðXÞ ¼ N
X∞

n¼0

eðγnat−γÞnμnat½X∩T−nðΩÞ�; ð3Þ

with normalization N ¼ ð1 − e−γÞ=ð1 − e−γnatÞ. This series
multiplies μnat in each forward escaping set T−nðΩÞ by an
appropriate factor which imposes the overall decay rate γ
according to Eq. (2). Two examples of γ-natural CIMs for
the partial-barrier Baker map are shown in Figs. 3(d) and
3(e). The measure is constant on T−nðΩÞ∩Γb for each
n ∈ N0. With increasing n, this constant is decreasing
(increasing) for γ > γnat (γ < γnat); in particular, short-lived
measures μγ have more weight in the opening. Note that the
idea underlying Eq. (3) was used without the notion of
CIMs in Ref. [18] for sets X ¼ T−nðΩÞ for systems without
a partial barrier. Moreover, note that the γ-natural CIMs
are solutions of the exact Perron-Frobenius operator (which
is not available), but cannot be obtained from finite-
dimensional approximations. Therefore, they have to be
constructed directly in phase space.
We find as our main result on the classical localization of

μγ due to a partial barrier that the weight of μγ on each side
of the partial barrier is given by [48]

μγðA1Þ ¼
μnatðA1Þ − cγ

1 − cγ
; ð4Þ

and μγðA2Þ ¼ 1 − μγðA1Þ, with

cγ ¼ ð1 − eγ−γnatÞð1 − e−γnatÞ jA1j
jΩj

jA2j
Φ

: ð5Þ

The values for μnatðA1Þ and γnat follow from the longest-
lived eigenstate of the eigenvalue problem

Fnat

�
μnatðA1Þ
μnatðA2Þ

�
¼ e−γnat

�
μnatðA1Þ
μnatðA2Þ

�
; ð6Þ

FIG. 3 (color online). (a) Illustration of the partial-barrier Baker
map T ¼ M∘E∘O. Magenta line indicates partial barrier and gray
shaded region marks the opening (left and central) and image of
opening (right). (b) Backward trapped set (dark horizontal
stripes) and forward escaping sets Ω (gray), T−1ðΩÞ (yellow),
T−2ðΩÞ (orange), and T−3ðΩÞ (red). (c) Natural CIM integrated
over boxes of size 3−3 in the p direction. (d),(e) Approximation of
γ-natural CIMs by truncation of Eq. (3) to n ≤ 2 for γ ≠ γnat.
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where Fnat denotes the transition matrix between A1 and
A2 for the one-step propagation of μnat (see Ref. [49]
for approximations of the Perron-Frobenius operator). In
general, Fnat may be obtained numerically or it may be
approximated by assuming a uniform distribution for μnat,

Fnat ≈
�
1 − ðjΩj þ ΦÞ=jA1j Φ=jA2j

Φ=jA1j 1 − Φ=jA2j

�
: ð7Þ

This turns out to be quite a good approximation even for
fractal μnat and it is exact for the partial-barrier Baker map.
Quantum-to-classical correspondence.—Figure 1 (green

line) shows the classical localization μγðA1Þ, Eq. (4), for
γ ¼ γnat (i.e., cγ ¼ 0 and μγ ¼ μnat), using the approxima-
tion Eq. (7). When increasing the size jΩj of the opening,
we find a transition from equipartition for jΩj ≪ Φ to
localization for jΩj ≫ Φ. The only scaling parameters are
jΩj=Φ and jA1j=jA2j. We find very good agreement of
the classical localization measure with the localization of
the quantum resonance states. Note that for γ ≠ γnat, the
localization depends on all parameters jΩj, Φ, and jA1j.
Figure 2 (green line) shows Eq. (4) as a function of γ.

The classical localization measure μγðA1Þ monotonically
increases with γ; i.e., the faster the decay, the larger is the
weight in region A1 with the openingΩ. In the limit γ → ∞
one finds μγðA1Þ ¼ 1, and in fact, all the weight is in the
opening Ω. In the limit γ → 0 one finds a small constant
μ0ðA1Þ > 0; i.e., even though most of the weight is in A2

there is always a small contribution in A1 due to the
exchange between A1 and A2. Again, we find very good
agreement between the classical localization measure and
the localization of the quantum resonance states for all
decay rates γ. Note that quantum-to-classical correspon-
dence is also confirmed for jA1j ≠ jA2j (not shown).
Do these results for the partial-barrier map generalize to

generic systems? In Fig. 4, we show for the standard map at
κ ¼ 2.9, where it has a mixed phase space, that the
localization of the chaotic resonance states on region A1,
which contains the opening, increases as a function of γ.
Qualitatively, we find the same localization behavior as for
the partial-barrier standard map in Fig. 2. Quantitatively, it
is well described by the classical localization of μγ, which is
determined numerically [48]. Also the analytical predic-
tion, Eq. (4), works reasonably well. Overall, Figs. 1, 2,
and 4 demonstrate quantum-to-classical correspondence for
the localization of chaotic resonance states in open systems
due to a partial barrier.
Outlook.—We see the following future challenges:

(a) While in this work we concentrate on the weights on
either side of a partial barrier, one should verify the
quantum-to-classical correspondence for the fine-structure
of chaotic resonance states to γ-natural CIMs. (b) Which
deviations arise when approaching the quantum regime of
h ≈ Φ, jΩj? (c) Is the new class of γ-natural CIMs, which
is quantum mechanically motivated, of relevance also in

classical dynamical systems? (d) Is it possible to predict
which quantum mechanical decay rates γ occur in the
presence of a partial barrier including their distribution, as it
is known for fully chaotic systems [20,50,51]? (e) The
present work explains the localization of resonance states
which have been used to derive the hierarchical fractal
Weyl laws [24] for a hierarchy of partial barriers. Now
it is possible to discuss whether these laws survive in the
semiclassical limit. (f) We see direct applications to mode
coupling in optical microcavities [52] and in recently
studied parity-time symmetric systems [53,54], where
instead of a partial barrier one has coupled symmetry-
related subspaces.
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