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We show, experimentally and numerically, that a mode-locked fiber laser can operate in a regime where
two dissipative soliton solutions coexist and the laser will periodically switch between the solutions.
The two dissipative solitons differ in their pulse energy and spectrum. The switching can be controlled by
an external perturbation and triggered even when switching does not occur spontaneously. Numerical
simulations unveil the importance of the double-minima loss spectrum and nonlinear gain to the switching
dynamics.
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Solitons are mathematically defined as a localized
solution of a partial differential equation describing the
evolution of a nonlinear integrable system [1]. The concept
of solitons is useful for describing physical phenomena
ranging from water waves [2] to optical pulses and beams
[3]. However, the requirement of integrability ignores
dissipation, which is unavoidable in real physical systems.
This difficulty with the strict definition of a soliton led to
the concept of a “dissipative soliton,” which is a solitonlike
entity that exists in the presence of gain and loss [4]. The
properties of dissipative solitons have only begun to be
explored because the systems where they exist have a richer
parameter space than integrable systems.
Optical solitons are the subject of many theoretical and

experimental studies because it is possible to carefully
tailor the system parameters. In optics, both temporal [5]
and spatial [6,7] solitons occur. Mode-locked lasers are an
important realization of temporal optical solitons. On one
hand, dissipative soliton theory provides important insight
into the operation of mode-locked lasers, and can help
improve their performance for applications including multi-
photon microscopy [8], time-domain spectroscopy [9], and
frequency combs [10]. On the other hand mode-locked
lasers provide an excellent test bed for soliton dynamics
because they provide an essentially infinite propagation
distance where the pulse can be sampled once per round
trip. For example, polarization locked vector solitons were
first observed in a mode-locked fiber laser [11] and
exploding solitons were observed first in a mode-locked
Ti:sapphire laser [12] and then in a mode-locked fiber laser
[13]. The concept of dissipative solitons led to mode-
locked fiber lasers with unprecedented output power levels
[14]. Theoretical studies to determine the stability of mode-
locked lasers have found that multiple solutions can coexist

[15]. Bistability has also been predicted to occur due to
higher order nonlinearities [16].
In this Letter, we report the experimental observation of

two dissipative soliton solutions coexisting in a mode-
locked fiber laser. In certain parameter regimes, the laser
spontaneously switches between the two solutions on a
time scale of several thousand round trips. The two
solutions are distinguished by their pulse energy, center
frequency, and spectral width. The switching between the
solutions can be controlled by injecting a control signal that
modulates the gain by depleting the excited state popula-
tion. In addition, the control signal can trigger switching
in regimes where it does not happen spontaneously.
Numerical simulations display similar spontaneous switch-
ing dynamics. These results give important new insight
into the dynamics of mode-locked lasers that will aid in
improving their performance. In addition, the observation
that the switching can be triggered has important implica-
tions for the response of these lasers to noise, which may be
strongly amplified if the laser happens to be in a parameter
regime where a small perturbation can trigger it to switch
between solutions.
The fiber laser uses erbium doped fiber for gain and is

mode locked using nonlinear polarization rotation [17,18].
The laser and experimental setup are described in more
detail in the Supplemental Material [19] and are similar
to the setup used to determine the quantum limits to the
comb linewidth for a mode-locked fiber laser [20]. The
output power is monitored using a slow photodetector that
integrates over the individual pulses and with a mono-
chromator followed by a photodetector. As the pump power
is increased, a transition to a stable mode-locked state is
observed. In this state there is a pulse circulating in the
cavity that is a dissipative soliton solution balancing the
linear, nonlinear and dissipative effects in the laser.
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However, a second transition is observed at higher pump
power (pump current above 1375 mA), above which the
output power is periodically modulated, as shown in Fig. 1.
Depending on the pump power, the modulation occurs at a
frequency ranging from 25 to 45 kHz, which corresponds
to thousands of round trips as the laser has a 96 MHz
repetition rate. The waveform of the intensity consists of
abrupt jumps between two power levels, with slow varia-
tion at each power level (see inset to Fig. 1).
The optical spectrum exhibits similar bistability. The

temporal evolution of the spectrum is reconstructed by
filtering out individual spectral slices using a monochro-
mator and recording their dynamics. To synchronize the
different spectral slices, the pulse intensity signal is used to
trigger the capture of a waveform. The resulting map of the
temporal evolution of the spectrum is shown in Fig. 2(a). It

shows two typical spectral shapes with abrupt transitions
between them. The spectra at 20 μs and 42 μs are shown in
Fig. 2(b), which shows a shift in the center frequency. The
black line in Fig. 2(a) is the calculated first moment of the
spectrum, which clearly shows a shift of approximately
1 THz. Furthermore, these two states also have different
spectral width (square root of the second moment of the
spectrum) as shown in Fig. 2(c), which has an abrupt
change of approximately 0.1 THz. The fluctuations in the
timing of the transitions are due to slight changes in the
switching frequency while the map is being acquired.
This fluctuation of the switching frequency can be

stabilized by injecting a control signal into the cavity.
The control signal is generated by a cw laser that is
sinusoidally modulated; thus, it modulates the gain via
stimulated emission when it passes through the erbium-
doped fiber. At a pump current of 1375 mA, the switching
frequency fluctuates around 20 kHz, indicated by the error
bars in Fig. 3(a). When modulation frequency of the control
signal is scanned, the switching frequency locks to that of
the control signal, within the range from 12 kHz to 25 kHz,
and the fluctuations are suppressed. Locking still occurs
when the pump current is increased, although at higher
frequency. Furthermore, the switching frequency can be
locked to the subharmonic of the modulation frequency of
the control frequency. For instance, when injecting the
control signal with a modulation frequency of 48 kHz, the
switching frequency can be locked to 24 kHz [Fig. 3(b)].
Since the switching phenomena is locking to a subhar-
monic of the control signal, it is a weaker effect, which is
apparent in the larger error bars.
In addition to stabilizing the switching frequency,

external perturbations can also trigger switching dynamics
in regimes where it does not occur spontaneously. This
effect is observed at a pump current of 1370 mA, below
the threshold of spontaneous switching. Without external
perturbation the laser stays stable. When a control signal
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FIG. 1 (color online). Frequency of intensity modulation as a
function of pump power. Inset shows output intensity as a
function of time for a modulation of 27 kHz.
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FIG. 2 (color online). Experimentally measured spectral
dynamics of the mode-locked fiber laser. (a) Intensity measured
as a function of time and frequency. The center frequency
(first moment) is plotted as a black line. (b) Two representative
spectra corresponding to 20 (red line) and 42 (blue line) μs [times
indicated by dashed vertical lines in panel (a)]. (c) Spectral width
(square root of the second moment) as a function of time.

0 10 20 30
5

10

15

20

25

30

Control frequency (kHz)

S
w

itc
hi

ng
 fr

eq
ue

nc
y 

(k
H

z)

40 60 80 100 120

S
lo

pe
 1

Sl
op

e 
1/

2

Slop
e 

1/
3

Slope 1/4

Slope 1/5

Slope 1/6

(a) (b)

FIG. 3 (color online). Locking of the switching frequency to a
control signal. In (a) the locking to the fundamental frequency
of the control signal is shown, while subharmonic locking is
shown in (b).
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with intensity modulation at 20 kHz is injected, transients
separated by 100 μs are observed in the output at 1595 nm,
as shown in Fig. 4. There is also a weak modulation
interleaved with the transients. Although the switching
frequency is half the perturbation frequency, this observa-
tion shows that switching dynamics can be triggered by
external perturbation below the spontaneous threshold.
The excitation of the switching dynamics by external
perturbation implies that a noise source can be significantly
amplified by intracavity pulse dynamics. Such an ampli-
fication of noise is detrimental to most applications.
The observations can be interpreted as evidence that

multiple stable soliton solutions coexist and the laser is
switching between them, either spontaneously or triggered
by the control signal. To determine if the observed
phenomenon is general and occurs in the theoretical
description of the dissipative soliton solutions for a
mode-locked laser, we carry out numerical investigation
of the pulse dynamics in the fiber laser based on the master
equation approach [21]. We use the split step propagation
technique that converges to stable solutions. The quartic
spectral loss profile has the potential to allow for the
switching of the pulse’s center frequency between two
values. Hence, we use the quintic complex Swift-
Hohenberg equation (CSHE) as the governing equation,
which is given below in its normalized form [22,23].

iψ z þ
D
2
ψ tt þ ηjψ j2ψ þ νjψ j4ψ

¼ iδψ þ iβψ tt þ iσψ tttt þ iϵjψ j2ψ þ iμjψ j4ψ ; ð1Þ

where ψ is the complex envelope of the optical field in the
time frame t moving with the pulse, and z is related to the
cavity round-trip number. The subscripts denote the deriv-
atives. D is the dispersion parameter where a positive value
represents the anomalous dispersion regime and a negative
value indicates the normal dispersion regime. η and ν are
responsible for the cubic and quintic nonlinearity, respec-
tively. The linear gain or loss spectrum is described by the

terms involving δ, β and σ, while the nonlinear gain or loss
is accounted for in the terms containing ϵ and μ.
Setting δ ¼ −0.5, β ¼ −0.3 and σ ¼ −0.05 introduces a

linear loss spectrum that is symmetric around the reference
frequency f0 with two loss minima at f − f0 ¼ �0.275,
which corresponds to the birefringent filter in the cavity.
Note that the loss is not minimum at f0. We solved Eq. (1)
using an initial condition whose spectrum is centered at f0.
We tuned the other parameters to D ¼ −1.0, η ¼ 1.0,
ν ¼ −0.01, ϵ ¼ 0.354 and μ ¼ −0.019 to obtain a dis-
sipative soliton that pulsates between two frequencies as
shown in Fig. 5. The numerical simulation presented here is
an illustrative example of the experiment, and the equation
parameters are chosen to fit roughly the parameters of the
laser. This effect does exist for several sets of parameters of
the Swift-Hohenberg equation. In particular, parameter ν
can be chosen to be zero as in previous work [24].
However, it is essential that parameter σ is negative, which
is a significant extension of the model of Renninger et al.
[24]. The unit frequency detuning f and the unit time delay
t in our numerical simulations can be determined from the
setup, which correspond to 12 THz and 83 fs, respectively.
Hence, the quantitative features of the simulation dynamics
are roughly in accordance with the experimentally observed
spectral shift of 1 THz and the pulse width of 84 fs.
The switching of the soliton’s frequency is symmetric

around f0 for the case shown in Fig. 5(a). The soliton’s
energy stays predominantly on one side of the spectrum for
a certain number of round trips, and then switches to the
other side and stays there for the same number of round
trips. In the time domain, the frequency switching causes
the soliton to be periodically delayed and advanced with
respect to the moving time frame as shown in Fig. 5(b).
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FIG. 4. The response at 1595 nm to a control signal with a
frequency of 20 kHz. The pump current is 1370 mA which
corresponds to an absence of spontaneous switching for no
control signal.
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FIG. 5 (color online). (a) Spectral and (b) temporal evolution of
the frequency pulsating soliton obtained by solving Eq. (1) with
D ¼ −1.0, η ¼ 1.0, ν ¼ −0.01, δ ¼ −0.5, β ¼ −0.3, σ ¼ −0.05,
ϵ ¼ 0.354, and μ ¼ −0.019. The black solid line in (a) shows the
first moment of the spectrum.
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We also generate a bifurcation diagram of the maximum
frequency shifts as a function of ϵ (Fig. 6) to study how the
frequency switching evolves. A fixed soliton is observed
for ϵ < 0.343. Past this point, a Hopf bifurcation occurs
causing the soliton to shift its frequency periodically
between two values that are located symmetrically around
f0 as the example shown in Fig. 5. When ϵ reaches 0.356
the symmetry of the bifurcation is broken. The soliton’s
frequency still shifts between two values on both sides of
f0, but asymmetrically such that there is a preferred side,
the red side for the case shown in Fig. 6. An example of the
asymmetric solution from this branch is shown in Fig. 7.
The soliton switches farther to the red side than the blue
side. In the case of asymmetric switching, it takes the
soliton a longer time to switch than the symmetric case.
As ϵ is increased further, a second frequency appears

0.359 < ϵ < 0.362. The mix of multiple incommensurate
frequencies results in a continuous range of values for
fcm;max. Such multifrequency dynamics of a dissipative
soliton was also observed in a cubic-quintic complex
Ginzburg-Landau equation for a creeping soliton forming
a zig-zag motion that involves multiple frequencies [25].
However, the primary (higher) frequency component was
responsible for the energy pulsation in the former study,
whereas it is bound to the switching of the soliton’s
frequency here. The frequency switching dynamics ceases
for ϵ > 0.3627 and the soliton returns to its fixed state, but
it now finds a new center frequency to stay near the one
of the minima in the linear loss spectrum.
The numerical studies show that the linear loss spectrum

strongly influences the excitation of switching dynamics.
Moreover, since ϵ is related to nonlinear gain or loss of the
laser it depends on the pump power and mode-locking
state. Then such a coexistence of dissipative solitons only
happens when the laser has certain specific parameters,
e.g., a proper loss spectrum, and operates in certain
regimes, e.g., certain pump level.
In conclusion, we have observed the coexistence of

dissipative soliton solutions in a mode-locked Er-doped
fiber laser, characterized by a different pulse energy and
center frequency. The center frequency of the soliton

periodically switches between two well separated values
in thousands of round trips. The frequency of the switching
behavior can be locked to an external control signal.
Furthermore, the control signal can trigger switching
behavior in a regime where it does not happen sponta-
neously. Numerical simulations exhibit similar switching
dynamics. The linear loss spectrum and pulse energy is
critical for the presence of the switching. The experimental
and theoretical demonstration that dissipative soliton sol-
utions can coexist gives important new insight into dis-
sipative solitons and can help in understanding the noise
properties of mode-locked lasers.
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