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By means of variational methods and systematic numerical analysis, we demonstrate the existence of
metastable solitons in three dimensional (3D) free space, in the context of binary atomic condensates
combining contact self-attraction and spin-orbit coupling, which can be engineered by available
experimental techniques. Depending on the relative strength of the intra- and intercomponent attraction,
the stable solitons feature a semivortex or mixed-mode structure. In spite of the fact that the local cubic self-
attraction gives rise to the supercritical collapse in 3D, and hence the setting produces no true ground state,
the solitons are stable against small perturbations, motion, and collisions.
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Introduction and model.—Solitons result from the bal-
ance between dispersion and nonlinearity in diverse physical
systems. Stable solitons in one dimension (1D) have been
studied extensively in diverse media, most notably nonlinear
optics and atomic Bose-Einstein condensates (BECs) [1].
Multidimensional solitons were also predicted to exist in
ferromagnets [2], superconductors [3], semiconductors [4],
BECs [5], baryonicmatter [6], field theory [7], etc. However,
the creation of 2D and 3D bright solitons is a much more
challenging problem than in 1D. The fundamental difficulty
is the fact that the ubiquitous cubic local self-attractive
nonlinearity gives rise to the critical and supercritical
collapse (blowup) in the 2D and 3D geometry, respectively
[8–10], whichmakes all the bright solitons unstable (the self-
repulsive nonlinearity supports stable 2D dark solitons in the
form of delocalized vortices [11]). Several theoretical
schemes have been elaborated for the stabilization of 2D
and 3D solitons. They rely on the use of trapping potentials
[12–16], sophisticated nonlinear interactions [17–20], or
nonlocal nonlinearity [21,22]. However, it is commonly
believed that a local cubic self-attraction may never give
rise to stable solitons in 3D free space [18,23].
Recently, an essential result [24], which helps to resolve a

related but easier problem of the stabilization of solitons in
2D free space with local cubic attraction, has been reported
in the framework of themodel of a binary BEC subject to the
action of spin-orbit coupling (SOC) [25] (solitons in 1D
SOCmodels have been predicted, too [26], but their stability
is obvious). It was found that the system gives rise to
completely stable 2D bright solitons as the ground state
(GS). The stabilization is explained by the fact that the linear
SOC terms come with a coefficient whose dimension is

inverse length. The usual 2D systems without SOC feature a
specific scaling invariance, which is closely related to the
critical collapse. The scaling invariance makes the family of
2D solitons degenerate (they are called Townes solitons in
that case [27]), with a single value of the norm that does not
depend on the soliton’s chemical potential. This norm
determines the threshold for the onset of the critical collapse
[8,9]. Breaking the scaling invariance by introducing a fixed
length scale leads to the stabilization of 2D solitons. This can
be achieved by adding trapping potentials [12–16] or, in the
free space, with the help of SOC [24], which creates the
missing GS by pushing the norm of the 2D solitons below
the collapse threshold. A similar mechanism enables the
stabilization of 2D spatiotemporal solitons in a planar
optical coupler [28], with the coupling’s temporal dispersion
[29] emulating the SOC effect.
It has been previously shown that, besides the stabiliza-

tion of 2D solitons, the interplay of SOC and intrinsic BEC
nonlinearity gives rise to a variety of other remarkable
phenomena [30]. However, the possibility of stabilizing 3D
solitons in free space with the help of SOC remained an
open question. The fundamental difficulty is that, contrary
to the 2D situation, the supercritical collapse in 3D has zero
threshold, and hence the norm cannot take values below the
threshold, making the stabilization mechanism outlined
above irrelevant in 3D. The present work reveals that,
nevertheless, the self-attractive binary SOC condensate can
support (meta)stable 3D solitons in free space, in spite of
the fact that the setting has no GS at any value of the norm
(in other words, the energy is unlimited from below). We
find that the SOC-induced modification of the dispersion of
the 3D condensate may balance the attractive nonlinearity,
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creating metastable solitons. In addition to the absence of
the GS, another fundamental difference of this mechanism
from what is outlined above for 2D is that the stability of
the 3D solitons is controlled not by the norm, but rather by
their energy.
We follow the usual mean-field approach, defining

ΨðrÞ ¼ ðψþ;ψ−ÞT as the condensate wave function, with
� referring to two pseudospin components. Fixing by
means of rescaling the atomic mass and Planck’s constant
to be 1, we write the system’s energy as the sum of kinetic,
SOC, and interaction terms:

Etot ¼ Ekin þ Esoc þ Eint;

Ekin ¼
1

2

Z
d3rΨ†p2Ψ; Esoc ¼ λ

Z
d3rΨ†ðp · σÞΨ;

Eint ¼ −
g
2

Z
d3rðjψþj4 þ jψ−j4 þ 2ηjψþψ−j2Þ; ð1Þ

where σ ¼ ðσx; σy; σzÞ are Pauli matrices and p ¼ −i∇
is the momentum operator. We adopt the 3D isotropic
form of the SOC with strength λ [31]. The intra- and

intercomponent interaction strengths are defined, respec-
tively, as −g and −ηg, with g > 0 corresponding to the self-
attraction and η being the relative cross-nonlinearity
strength. Below, we fix the nonlinearity strength, by
rescaling the wave functions, to g ¼ 1 and vary the SOC
strength λ, norm N, and cross-nonlinearity strength η.
Dimensional analysis.—If L is a characteristic size of the

self-trapped condensate, an estimate for the amplitudes of
the wave functions with norm N ¼ R

d3rðjψþj2 þ jψ−j2Þ is
ðjψ�jÞmax ∼

ffiffiffiffi
N

p
L−3=2. Therefore, the three terms in Eq. (1)

scale with L as

Etot=N ∼ ckinL−2 − csocλL−1 − ðcðselfÞint þ cðcrossÞint ηÞNL−3;

ð2Þ

with positive coefficients ckin, csoc, and cðself=crossÞint . As
shown in Fig. 1, Eq. (2) gives rise to a local minimum
of EtotðLÞ at finite L, provided that

0 < λN < c2kin=½3ðcðselfÞint þ cðcrossÞint ηÞcsoc�: ð3Þ

Although this minimum cannot represent the GS (which
formally corresponds to Etot→−∞ at L→0 in the col-
lapsed state; i.e., the system has no true GS), it corresponds
to a self-trapped state stable against small perturbations.
Previously, a similar approximate analysis has correctly
predicted stable quasi-2D solitons in dipolar BEC [22].
Condition (3) suggests that metastable 3D solitons may

exist in free space when the SOC term is present, while its
strength λ is not too large, N and η being not too large
either. We confirm these expectations below by means of
accurate numerical analysis.
The Gross-Pitaevskii equation.—Energy functional (1)

gives rise to the Gross-Pitaevskii equation (GPE) for the
spinor wave function:

�
i
∂
∂tþ

1

2
∇2 þ iλ∇ · σþg

� jψþj2 þ ηjψ−j2 0

0 jψ−j2 þ ηjψþj2
��

Ψ ¼ 0: ð4Þ

Assuming axial symmetry of the expected self-trapped
states (it is the highest symmetry admitted by the SOC [24])
and using cylindrical coordinates (r, z, ϕ), the stationary
wave function with integer vorticity m ≥ 0 and chemical
potential μ is looked for as

�
ψþ
ψ−

�
¼ e−iμt

�
eimϕf1ðr; zÞ

eiðmþ1Þϕf2ðr; zÞ

�
: ð5Þ

Following the terminology introduced for 2D solitons in
Ref. [24], self-trapped states (5) with m ¼ 0 are called
semivortices (SVs), the states with m ≥ 1 being their
excited states. Similar to the 2D system [24], our calcu-
lations demonstrate that the energy of the SV withm ¼ 0 is
always lowest; therefore, we focus on m ¼ 0.

Because of the up-down symmetry of underlying
Hamiltonian (1), degenerate to SV (5) is its flipped
counterpart,

�
ψþ
ψ−

�
¼ e−iμt

�
e−iðmþ1Þϕf�2ðr; zÞ
e−imϕf�1ðr; zÞ

�
; ð6Þ

with � standing for the complex conjugate. Although the
system is axially symmetric, stationary states do not
necessarily follow this symmetry. In particular, any super-
position of Ansätze (5) and (6) breaks the symmetry.
Following the nomenclature introduced in Ref. [24], we
call the state generated by such a superposition a mixed
mode (MM). Approximating it by the superposition with
mixing angle θ [32],
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FIG. 1 (color online). Etot as a function of condensate’s size L,
as per Eq. (2). The red solid, blue dashed, and green dot-dashed
lines represent the energy’s variation when λ ¼ 0, and λ > 0 does
or does not satisfy condition (3), respectively.
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ψþ ¼ ðcos θÞf1ðr; zÞ − ðsin θÞf�2ðr; zÞe−iϕ;
ψ− ¼ ðsin θÞf�1ðr; zÞ þ ðcos θÞf2ðr; zÞeiϕ; ð7Þ

straightforward calculation relates its energy to that of the
respective SV:

EMM ¼ESVþð1−ηÞsin2θcos2θΔE;

ΔE¼ 2πg
Z

rdr
Z

dzðjf1j4þjf2j4−4jf1j2jf2j2Þ: ð8Þ

Our numerical calculations show that ΔE is always
positive; hence, like in the 2D case [24], the SV (MM)
has lower energy at η < 1 (η > 1). This prediction is
confirmed below by the full numerical analysis.
Variational analysis.—To produce analytical results in a

more accurate form than given by Eq. (2), we here adopt the
following Ansatz for the SV:

fn ¼ in−1ðAn þ iBnzÞrn−1e−αnr2−βnz2 ðn ¼ 1; 2Þ;
with real parameters An, Bn, and αn > 0, βn > 0. The
substitution of this Ansatz into expression (1) for the full
energy and minimizing it with respect to the free param-
eters produces algebraic equations which can be readily
solved numerically. Stable solitons correspond to finite
values of αn and βn, while αn, βn → 0 (spreading) and αn,
βn → ∞ (collapsing) indicate that no solitons exist. Results
of the calculations are summarized in Fig. 2, in which the
stable 3D solitons are predicted to exist in the shaded areas.
We thus conclude that the solitons indeed exist, provided
that λ, N, and η are not too large, in agreement with the
qualitative prediction of Eq. (3) from the dimensional
analysis. In particular, an important conclusion is that,
for fixed λ and η, the stable solitons always exist in a finite
interval of the norm:

0 ≤ N ≤ Nmaxðλ; ηÞ: ð9Þ
Furthermore, as shown in Fig. 3(a), for η < 1 the energy of
the SV predicted by the variational analysis (VA) is lower

than that for the MM, and vice versa for η > 1, in agree-
ment with the prediction of Eq. (8).
The red squares in Fig. 3(b) represent the variational

results for the soliton’s chemical potential μ, plotted as a
function of norm N for g ¼ λ ¼ 1 and η ¼ 0.3. In agree-
ment with the analytical prediction given by Eq. (9), there is
no threshold (minimum norm) necessary for the appearance
of the solitons, which exist up to a N ¼ Nmax. Furthermore,
the negative slope of the dependence, dμ=dN < 0, of the
upper branch is an indication of the stability of the soliton
families, pursuant to the Vakhitov-Kolokolov (VK) cri-
terion [8,24,33]. The lower branch, which does not satisfy
the VK criterion, represents solitons corresponding to the
energy maximum on the blue dashed curve in Fig. 1. In the
limit of μ → −∞, they carry over into the well-known
strongly unstable 3D solitons of the GPE [34].
Full numerical calculations.—The prediction for the

existence of the stable 3D solitons in free space, provided

(a) (b)

FIG. 2 (color online). Three-dimensional stable solitons are
predicted by the variational calculation in blue shaded regions of
the respective parameter planes. In (a), these are SVs at η < 1 and
MMs at η > 1, with the boundary between them depicted by the
black solid line. In (b), the entire stability area is filled by the
solitons of both types, as the SVs and MMs have equal energies at
η ¼ 1. The predictions are accurately confirmed by full numerical
simulations, as indicated by red crosses and black dots, which
indicate, respectively, the absence and presence of stable solitons
for respective sets of parameters.

(b)(a)

FIG. 3 (color online). (a) Energies of the SVs and MMs, as
predicted by the variational approach for g ¼ λ ¼ 1 and N ¼ 8.
The two curves cross at η ¼ 1, where the SVand MM have equal
energies. (b) The numerically (blue circles) and variationally (red
squares) found chemical potential vs the norm for the SVs at
g ¼ λ ¼ 1 and η ¼ 0.3. The numerical branch extends up to
N ¼ Nmax, in agreement with Eq. (9).

FIG. 4 (color online). Density profiles of 3D solitons for
N ¼ 8 and g ¼ λ ¼ 1. (a) A SV for η ¼ 0.3, whose funda-
mental and vortical components jψþj and jψ−j are plotted in
(a1) and (a2), respectively. (b) A MM for η ¼ 1.5, with (b1)
and (b2) displaying jψþj and jψ−j, respectively. In each
subplot, different colors represent constant-magnitude surfa-
ces, jψ�j ¼ ð0.96; 0.4; 0.04Þ × jψ�jmax.
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by the analytical approximations, calls for verification by
direct simulations of GPE (4). First, we generated sta-
tionary states by running the simulations in imaginary time.
Typical examples of the so-produced SV and MM density
profiles are displayed in Fig. 4. Symbols in Fig. 2, which
indicate the absence and presence of stable solitons, are in
good agreement with the VA.
The blue circles in Fig. 3(b) represent the numerically

obtained chemical potentials, which are in good agreement
with the prediction of the VA. The unstable branch from the
VA, however, cannot be produced by the imaginary-time
integration. We have verified the stability of the solitons
belonging to the upper branch in Fig. 3(b) by real-time
simulations with random perturbations added to the initial
conditions, confirming that the VA accurately predicts
the SV and MM stability areas which are displayed in
Figs. 2 and 3.
Setting quiescent solitons in motion is another nontrivial

issue, as the SOC terms break the Galilean invariance of the
system. To construct solitons moving along the z axis with
velocity vz, so that ψ� ¼ ψ�ðr;ϕ; z − vzt; tÞ, we have
rewritten the GPE system (4) in the respective moving
reference frame. In this form, the velocity term affects the
SOC strength along the z axis, breaking the symmetry
between the two components of the spinor. As a result,
positive (negative) vz tends to increase the population of the
spin-down (-up) component. In Fig. 5, we plot the ratio of
the spin populations as a function of vz. Both VA and
numerical results are displayed, showing qualitatively
similar results. At vz < −0.9 and vz > þ0.4, the moving
semivortex practically degenerates into a single-component
soliton—the fundamental or vortical one, respectively—
thus reducing the setting to that for the single GPE with the
cubic self-attraction, where all 3D solitons are strongly
unstable. Consequently, the speed of the stably moving
solitons cannot be too large.
Finally, to consider collisions between moving solitons,

we place two solitons centered at initial positions ðr; zÞ ¼
ð0;�z0Þ and include a trapping potential Ω2ðr2 þ z2Þ=2.
The solitons then start moving to collide at the trap center,
with the trapping frequency Ω used to control the collision
velocity. Figure 6 depicts two collision events for the same

initial soliton pair. In Fig. 6(a), the slowly moving solitons
feature a quasielastic collision, while, in Fig. 6(b), the
collision leads to destruction of faster solitons. This shows
the solitons are robust against slow collisions.
Conclusion.—The combination of the analytical and

numerical methods reveals that stable free-space 3D sol-
itons can be supported in the binary atomic condensate with
attractive interactions and properly engineered SOC, not-
withstanding the presence of the supercritical collapse in
the same setting. This is the first example of metastable
solitons in the 3D homogeneous environment with local
cubic self-attraction, which exist in spite of the nonexist-
ence of the GS in the system. The SOC plays a crucial role
for the stabilization, altering the energy of the self-trapped
states so as to create the local energy minimum. This is the
fundamental difference from the recently discovered stabi-
lization mechanism in 2D [24], which readily creates a
missing GS below the critical value of the norm (at
N < Ncr), where solitons, if any, cannot be destabilized
by the critical collapse, as it does not occur at N < Ncr, but
no solitons could be created at N ≥ Ncr. In 3D, the
existence of the metastable solitons is controlled not by
the norm [in an appropriate parameter region, they can be
created for any N, although the appropriate region becomes
very narrow for very large N, as seen in Fig. 2(b)], but by
the energy, as the above analysis clearly shows.
Although we have adopted the isotropic SOC term in the

Hamiltonian, in the form of λp · σ, the stabilization of the
3D solitons does not critically depend on this form,
additional analysis demonstrating that the metastable 3D
solitons exist as well if the SOC strength is different along
different axes. It may also be interesting to find out if 3D
solitons can be stabilized by spatially localized SOC (for
1D solitons, this setting was studied in Ref. [35], but the
stability is not an issue in that case). Influence of the
Zeeman splitting, which breaks the up-down symmetry of
the spinor components, on the stability of the solitons is
another relevant problem for further analysis.

FIG. 5 (color online). The ratio of the spin populations as a
function of velocity vz for the moving SVwithN ¼ 8, g ¼ λ ¼ 1,
η ¼ 0.3, and N� ≡ R

d3rjψ�ðrÞj2. The red dashed lines with
squares are variational results, while the blue solid lines with
circles are obtained numerically, using the imaginary-time
integration in the moving reference frame.

FIG. 6 (color online). Collisions of stable 3D SVs in the
harmonic trap for N ¼ 8, g ¼ λ ¼ 1, and η ¼ 0.3. Panels
[(a1), (a2)], [(a3), (a4)], [(a5), (a6)], [(a7), (a8)], and [(a9),
(a10)] display density distributions for Ω ¼ 0.5 at t ¼ 0, 1.2, 3.2,
4, and 6, respectively. Panels [(b1), (b2)], [(b3), (b4)], [(b5), (b6)],
[(b7), (b8)], and [(b9), (b10)] display the distributions for Ω ¼ 1
at t ¼ 0, 1, 1.4, 2, and 3, respectively. In all panels, the left and
right subplots display, severally, jψþj and jψ−j.
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On the experimental side, 2D SOC was recently created
in an ultracold Fermi gas [36]. Realization of 3D SOC may
be expected in the near future, as there is no fundamental
obstacle for doing that.
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