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We derive a new flavor symmetry relation for the determination of the weak phase β ¼ ϕ1 from time-
dependent CP asymmetries and B → J=ψP decay rates. In this relation, the contributions to sin 2β
proportional to Vub are parametrically suppressed compared to the contributions in the B → J=ψK0 time-
dependent CP asymmetry alone. This relation uses only SUð3Þ flavor symmetry, and does not require
further diagrammatic assumptions. The current data either fluctuate at the 2σ level from expectations,
or may hint at effects of unexpected magnitude from contributions proportional to Vub or from isospin
breaking.
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Introduction.—CP violation in B → J=ψKS will be
measured at the percent level at Belle II [1] and LHCb
[2], a precision several times better than today [3–5], and
crucial for improving the sensitivity to new physics in B
mixing (see, e.g., Ref. [6]). This projected uncertainty
is comparable to the characteristic size of the Cabbibo-
Kobayashi-Maskawa (CKM) suppressed uncertainties,
proportional to Vub in the time-dependent CP asymmetry,

Γ½B̄ðtÞ→ f�− Γ½BðtÞ→ f�
Γ½B̄ðtÞ→ f� þ Γ½BðtÞ→ f� ¼ Sf sinðΔmtÞ−Cf cosðΔmtÞ;

Sf ¼
2Im½ðq=pÞðĀf=AfÞ�

1þ jĀf=Afj2
; Cf ¼

1− jĀf=Afj2
1þ jĀf=Afj2

: ð1Þ

(In the literature the terms proportional to Vub are often
referred to as “penguin pollution.” Since we are not
concerned with diagrammatic arguments, we identify
such terms by CKM factors.) Here, f denotes final
states composed of J=ψ and a pseudoscalar meson, P;
Af ¼ hfjHjB0i, Āf ¼ hfjHjB̄0i;Δm is the mass difference
between the two neutral B mass eigenstates, jBH;Li ¼
pjB0i ∓ qjB̄0i; and we neglect the small OðΔΓ=Γ;jq=pj−
1Þ effects in the Bd system, as well as OðϵKÞ effects, which
are straightforward to include [7].
At the current level of precision, the relation

SKS
¼ sinð2βÞ þO½V�

ubVus=ðV�
cbVcsÞ� þ � � � ; ð2Þ

truncated at leading order, has been sufficient to extract the
CKM phase β≡ arg½−V�

cbVcd=ðV�
tbVtdÞ�. The theoretical

uncertainty is limited by our ability to compute or bound
the subleading contribution to the decay amplitude, propor-
tional to Vub. This is the Au term in the decay amplitude,

A ¼ λqcAc þ λquAu; λqi ≡ V�
ibViq; ð3Þ

(i ¼ u; c and q ¼ d; s), which has a different weak phase
and possibly a different strong phase than the dominant
Ac term.
The upcoming experimental precision has renewed

interest in constraining the effects of this “Vub contami-
nation” in measurements of β and its analog in Bs decays,
βs. Comparisons between Bd → J=ψρ0 and Bs → J=ψϕ
[8,9] rely both on flavor symmetry and diagrammatic
arguments. It has also been proposed to use Bs→J=ψKS
to control the Vub term in Bd → J=ψKS (see, e.g.,
Ref. [10]). Other approaches attempt to constrain the
Vub contribution from global fits to multiple observables
using flavor SUð3Þ [11–15], often with additional simpli-
fying assumptions, or attempt to compute the correspond-
ing hadronic matrix element using QCD factorization
(see, e.g., Ref. [16]). Some of these works claim that the
Vub contamination can be enhanced to several percent,
which is challenged by a lower estimate of rescattering
effects using measured rates [17].
In this Letter we derive a flavor SUð3Þ relation for β,

involving the Bd → J=ψKS, Bd → J=ψπ0, Bþ → J=ψKþ,
and Bþ → J=ψπþ branching ratios andCP asymmetries, in
which, in the SUð3Þ limit, the contributions linear in Vub
cancel. This permits extraction of β up to parametrically
suppressed contributions, compared to the Vub contami-
nation in Eq. (2). Our results rely only on group theoretic
relations among the decay amplitudes, and do not involve
diagrammatic or factorization arguments. The same rela-
tions imply a lower bound for the presently unmeasured
Bs → J=ψπ0 decay rate.
Amplitude relations.—We obtain SUð3Þ relations for the

B → J=ψf decay amplitudes by application of a Wigner-
Eckart expansion, after embedding the Hamiltonian and
the in and out states into SUð3Þ representations. The B in
states furnish a flavor antitriplet, ½B3�i ¼ ðBþ; Bd; BsÞ.
The charmless pseudoscalar out states furnish a singlet,
½P1� ¼ η1, and the usual octet,
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½P8�ij ¼

0
BB@

π0ffiffi
2

p þ η8ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p K0

K− K̄0 − 2η8ffiffi
6

p

1
CCA: ð4Þ

We allow an arbitrary η-η0 mixing angle, such that the mass
eigenstates are ηð0Þ ¼ η8 cos θ ∓ η1 sin θ.
The effective Hamiltonian for B → J=ψP decay contains

four-quark operators that mediate b̄ → q̄iqjq̄k or b̄ → cc̄q̄i

transitions (q ¼ u; d; s). Under SUð3Þ flavor, this embeds
into 3 ⊗ 3̄ ⊗ 3 ¼ 3 ⊕ 30 ⊕ 6̄ ⊕ 15 irreducible represen-
tations. The nonzero independent components of the
Hamiltonian are given in Eq. (53) of Ref. [18]. Finally,
SUð3Þ and isospin breaking is encoded by insertions
of the usual octet spurions, ½M�ij ≡ ε diagf1; 1;−2g and
δ diagf1;−1; 0g, respectively.
We work to first order in GF and to all orders in αs.

In the SUð3Þ limit, the Ac and Au terms in Eq. (3) each
depend on three reduced matrix elements, corresponding
to the 3, 6̄, and 15 pieces of the Hamiltonian. For Ac,
the 6̄ and 15 terms only arise from electroweak penguin
contributions, suppressed by αem. These are accounted
together with other sources of isospin breaking in Ac,
which are comparable in size. The electroweak penguin
contributions to Ac transforming as the 3 (which probably
dominate) are automatically absorbed in the leading Ac
contributions.
The decay amplitudes are expanded to OðεpÞ via

AðB → J=ψfÞ ¼
X
w;p

Xp
wðCp

wÞB;f;

ðCp
wÞB;f ≡ ∂2

∂f∂B ½½P1;8�i1…j1…Hp1…
q1…ð½M�k1l1 � � �Þ½B3�r�w:

ð5Þ

Here, w labels a set of linearly independent SUð3Þ tensor
contractions, H is the Hamiltonian, and there are p
insertions of M. The Xp

w are reduced matrix elements,
while Cp

w encode the weak physics, pth order SUð3Þ
breaking effects, and group theoretic factors. Finding
SUð3Þ sum rules at order εp is equivalent to computing
kernels of ðCp

wÞB;f [18,19].
It is useful to derive relations that hold independently for

the Ac and Au amplitudes in Eq. (3). In anticipation of the
need to account for SUð3Þ breaking effects, we further
expand each reduced matrix element order by order in
SUð3Þ breaking, and write

Ac ¼ Að0Þ
c þ εAð1Þ

c þ � � � ;
Au ¼ Að0Þ

u þ εAð1Þ
u þ � � � : ð6Þ

In the SUð3Þ limit, we have

0 ¼ Að0Þ
c ðBs → J=ψπ0Þ; ð7aÞ

Ac ≡ Að0Þ
c ðBd → J=ψK0Þ ¼ Að0Þ

c ðBþ → J=ψKþÞ
¼ Að0Þ

c ðBþ → J=ψπþÞ ¼ Að0Þ
c ðBs → J=ψK̄0Þ

¼ −
ffiffiffi
2

p
Að0Þ
c ðBd → J=ψπ0Þ: ð7bÞ

Hereafter, we write Ac instead of the Að0Þ
c amplitudes in

Eq. (7b). Considering the first order SUð3Þ breaking
contributions to the amplitudes independently, we find

0 ¼ Að1Þ
c ðBs → J=ψπ0Þ; ð8aÞ

0 ¼
ffiffiffi
2

p
Að1Þ
c ðBd → J=ψπ0Þ þ Að1Þ

c ðBþ → J=ψπþÞ; ð8bÞ
0 ¼ Að1Þ

c ðBd → J=ψK0Þ − Að1Þ
c ðBþ → J=ψKþÞ; ð8cÞ

0 ¼ Að1Þ
c ðBþ → J=ψKþÞ þ Að1Þ

c ðBþ → J=ψπþÞ
þ Að1Þ

c ðBs → J=ψK̄0Þ; ð8dÞ
Equations (8a)–(8c) are isospin relations, and hold to all
orders in the SUð3Þ breaking parameter ε. Finally, the Au
amplitudes in the SUð3Þ limit satisfy [20–22]

0 ¼ Að0Þ
u ðBþ → J=ψπþÞ − Að0Þ

u ðBþ → J=ψKþÞ; ð9aÞ
0 ¼ Að0Þ

u ðBd → J=ψK0Þ − Að0Þ
u ðBs → J=ψK̄0Þ; ð9bÞ

0 ¼
ffiffiffi
2

p
Að0Þ
u ðBd → J=ψπ0Þ −

ffiffiffi
2

p
Að0Þ
u ðBs → J=ψπ0Þ

þ Að0Þ
u ðBd → J=ψK0Þ: ð9cÞ

Besides Eqs. (7)–(9), there are further relations involving
J=ψηð0Þ states, that are not needed for our analysis. Similar
relations also hold for vector mesons, with obvious
replacements.
It is often assumed based on diagrammatic arguments

that the Að0Þ
u ðBs → J=ψπ0Þ contribution in Eq. (9c) can be

neglected (see, e.g., Refs. [11–14]). We make no such

assumption. The current limits on Að0Þ
u ðBs → J=ψπ0Þ are

weak, in the sense that the data allow this contribution to
be sizable. Below we use Eq. (9c) to set a lower bound on
the branching ratio BðBs → J=ψπ0Þ.

Relation for sinð2βÞ.—Given the flavor symmetry rela-
tions, we proceed to construct an SUð3Þ relation among
branching ratios and time-dependent CP asymmetries, that
permits extraction of β without Vub contamination in the
SUð3Þ limit. This relation will only involve Bd or Bþ
decays, so hereafter we denote Af ≡ AðB → J=ψfÞ, for
B ¼ Bd, Bþ.
Besides the SUð3Þ and isospin breaking parameters,

ε ∼
fK
fπ

− 1 ∼ 0.2; δ ∼
md −mu

ΛχSB
≲ 1%; ð10Þ

we also expand certain observables in
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λ̄2 ≡ −
λsu
λsc

λdc
λdu

≃ 0.05; Ru ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄2 þ η̄2

q
≃ 0.37; ð11Þ

where ρ̄þ iη̄≡ −λdu=λdc ≃ 0.15þ 0.34i is the apex of
the unitarity triangle. Powers of Ru track powers of Vub,
and enter with corresponding powers of Au=Ac. We make
no assumptions concerning the size of jAu=Acj. While ε
and Ru are not particularly small parameters, R2

u, εRu, and
ε2 can be treated as ≪ 1. We therefore expand physical
observables to this order, and seek relations without
Oðε; RuÞ terms.
Expanding to next-to-leading order in these small

parameters, the CP-averaged rate is

Γ̄ðB→ J=ψfÞ ¼ ½j~pB→J=ψfj=ð8πm2
BÞ�jλqc j2jAð0Þ

c;fj2

×

"
1þ 2εRe

Að1Þ
c;f

Að0Þ
c;f

þ 2Re
λqu
λqc

Re
Að0Þ
u;f

Að0Þ
c;f

þ � � �
#
:

ð12Þ
Corrections areOðR2

u; εRu; ε2Þ andOðεRuλ̄
2; ε2Þ in b→d;s

processes, respectively. The εAð1Þ
c =Að0Þ

c terms arise from
first order SUð3Þ breaking and must be kept, as they are
parametrically larger than Oðλ̄2Þ. Note they do not satisfy

the same relations as the Að0Þ
c terms.

Applying Eqs. (7b) and (8c) to Eq. (12) yields

ΔK ≡ Γ̄ðBd → J=ψK0Þ − Γ̄ðBþ → J=ψKþÞ
Γ̄ðBd → J=ψK0Þ þ Γ̄ðBþ → J=ψKþÞ

¼ Re
λsu
λsc

Re

ffiffiffi
2

p
Að0Þ
u;KS

− Að0Þ
u;Kþ

Ac
þOðεRuλ̄

2; δÞ: ð13Þ

We emphasize that the εnRe½AðnÞ
c =Að0Þ

c � terms in Eq. (12)
are canceled up to isospin breaking corrections. We
have also made the replacement AðBd → J=ψK0Þ ¼ffiffiffi
2

p
AðBd → J=ψKSÞ. Analogously, we also obtain

Δπ ≡ 2Γ̄ðBd → J=ψπ0Þ − Γ̄ðBþ → J=ψπþÞ
2Γ̄ðBd → J=ψπ0Þ þ Γ̄ðBþ → J=ψπþÞ

¼ −Re
λdu
λdc

Re

ffiffiffi
2

p
Að0Þ
u;π0 þ Að0Þ

u;Kþ

Ac
þOðR2

u; εRu; δÞ; ð14Þ

where we replaced Að0Þ
u;πþ with Að0Þ

u;Kþ using Eq. (9a).
The CP asymmetry in Bd → J=ψf can be written as

Sf ¼ −ηf

"
sin 2β þ 2Im

λqu
λqc

Re
Að0Þ
u;f

Að0Þ
c;f

cos 2β þ � � �
#
; ð15Þ

where CPjJ=ψfi ¼ ηfjJ=ψfi, and corrections are
OðR2

u; εRuÞ and OðεRuλ̄
2Þ for b → d; s, respectively. The

Re½Að0Þ
u =Að0Þ

c � term in Eq. (15) dominates the Vub

contamination in Eq. (2). From Eq. (15) the CP asymme-
tries for Bd → J=ψKS and Bd → J=ψπ0 are

SKS
− sin 2β ¼ 2Im

λsu
λsc

Re

ffiffiffi
2

p
Að0Þ
u;KS

Ac
cos 2β þ � � � ;

Sπ0 þ sin 2β ¼ 2Im
λdu
λdc

Re

ffiffiffi
2

p
Að0Þ
u;π0

Ac
cos 2β þ � � � : ð16Þ

Eliminating the Vub contamination—the Að0Þ
u terms—in

Eqs. (13), (14), and (16), one obtains the relation

ð1þ λ̄2Þ sin 2β ¼ SKS
− λ̄2Sπ0

− 2ðΔK þ λ̄2ΔπÞ cos 2β tan γ
þOðεRuλ̄

2; R2
uλ̄

2; δÞ; ð17Þ
where γ ≡ argð−λdu=λdcÞ. Equation (17) is the main result
of this Letter. In the SUð3Þ limit, the Vub contamination
in SKS

, ΔSKS
≡ SKS

− sin 2β, is canceled by contributions
from ΔK , Δπ , and Sπ0 . This leaves only corrections para-
metrically higher order in ε, δ, or Ru,

εRuλ̄
2Re

Að0Þ
u

Ac
; R2

uλ̄
2

����A
ð0Þ
u;π

Ac

����2; δRe
Aδ
c;K

Ac
; ð18Þ

where δAδ
c;K is the isospin breaking difference of Ac;K0

and Ac;Kþ , arising in ΔK .
The OðεRuλ̄

2Þ SUð3Þ-breaking correction in Eq. (17)
is unambiguously smaller than the Vub contamination in
ΔSKS

, of order OðRuλ̄
2Þ.

The OðR2
uλ̄

2Þ terms in Eq. (17) are dominated by the
V2
ub terms in Δπ , which are numerically enhanced by

tan γ ≃ 2.6. If Au=Ac ¼ Oð1Þ, then these corrections are
not numerically suppressed, since Ru tan γ ≃ 0.9. However,
in this case, future data should show an enhancement of Δπ

compared to its present value (see Table I), which will
constrain this possibility. If Au=Ac ≪ 1 then this OðR2

uλ̄
2Þ

correction is negligible.
Concerning the isospin breaking OðδÞ contribution to

Eq. (17), if Au=Ac ¼ Oð1Þ and δRe½AðδÞ
c =Ac� ∼ 1%, then

this term is subleading compared to ΔSKS
. If Au=Ac ≪ 1

and δRe½AðδÞ
c =Ac� ∼ 1%, then this term may be numerically

larger than ΔSKS
. However, in this case, the experimental

upper bound on ΔK should decrease. It may also be
possible to obtain constraints on the isospin violating
matrix element Aδ

c;K=Ac using other methods, in order to
extract β from Eq. (17) at subpercent precision.

Numerical results and predictions.—The four observables
in Eqs. (13), (14), and (16) depend on β and the real parts of

the three Að0Þ
u;f=Ac amplitude ratios. We may therefore

extract these matrix elements and β from a fit to these
four observables, noting one may also extract β directly
from Eq. (17). We use the standard model (SM) fit values
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γ ¼ 67°� 2° and λ̄2 ≃ 5.36 × 10−2 [24] as inputs, and
determine Ru from the identity Ru ≡ sin β= sinðγ þ βÞ.
The SM CKM fit results for Ru (or ρ̄ and η̄) are not used,
as they depend strongly on the assumption of negligible
Vub contamination in β, whereas the SM fit result for γ has
only a small dependence on the direct β measurement.
The experimental data for these observables are shown

in Table I from HFAG [23]. The SKS
value is the average

of SJ=ψKS
from BABAR, Belle, and LHCb, with other

charmonium states ψð2SÞ, χc, etc., excluded, since those
hadronic matrix elements are not related by SUð3Þ. One
then finds from Eq. (17)

β ¼ 27.8°� 2.9°; ð19Þ

and from Eqs. (13), (14), and (16), the matrix elements

Re½Að0Þ
u;Kþ=Ac� ¼−0.4�0.4, Re½ ffiffiffi

2
p

Að0Þ
u;π0

=Ac� ¼ 0.2�0.3,

Re½ ffiffiffi
2

p
Að0Þ
u;KS

=Ac� ¼ −5.5� 2.3, and Ru=RSM
u ¼ 1.3� 0.1.

The π0 matrix element is consistent with recent global
fits or QCD factorization analyses (see, e.g., Refs. [10,16]).

On the other hand, Re½ ffiffiffi
2

p
Að0Þ
u;KS

=Ac� is larger than the
expected size of Vub contamination or isospin breaking.
This arises from the large central value of the linear
combination

ΔK þ λ̄2Δπ ¼ −0.052� 0.028: ð20Þ
Assuming that the Vub contamination and isospin violation
are small, so that β takes its current SM fit value,
β ¼ ð21.9� 0.8Þ° [24], then Eq. (17) and the SKS

and
Sπ0 data predict

ΔK þ λ̄2Δπ ¼ 0.001� 0.009: ð21Þ
The source of the 2σ tension between Eqs. (20) and (21) is
the same as that between Eq. (19) and the SM fit for β.
Future higher statistics data for the CP averaged B →
J=ψK and B → J=ψπ rates, together with the time depen-
dent CP asymmetries in Bd → J=ψK0 and Bd → J=ψπ0, is
required to resolve this tension. (Future measurements of
these rates may require combined analyses with other
decays, to simultaneously constrain the isospin

asymmetries and the BþB− versus BdB̄d production in
ϒð4SÞ decay. Current analyses either assume isospin
symmetry to measure the production rate difference, or
assume equal production rates to measure the branching
ratios entering ΔK;π [23,25].)
Combining Eq. (9c) with Eqs. (13) and (14), one finds in

the SUð3Þ limit

ΔK þ λ̄2Δπ ¼ Re
λsu
λsc

Re

ffiffiffi
2

p
Að0Þ
u ðBs → J=ψπ0Þ

Ac
: ð22Þ

The sizable experimental central value for the left-hand side
[cf. Eq. (20)] is therefore connected to the possibility of a

sizable amplitude Að0Þ
u ðBs→J=ψπ0Þ. According to Eq. (7a),

Að0Þ
c ðBs → J=ψπ0Þ vanishes by isospin. Neglecting the

possibility of cancellations between Að0Þ
u ðBs → J=ψπ0Þ

and the isospin violating contribution to AcðBs→J=ψπ0Þ,
Eq. (22) implies the lower bound

Γ̄ðBs → J=ψπ0Þ
Γ̄ðB → J=ψKÞ ≥

ðΔK þ λ̄2ΔπÞ2
2cos2γ

; ð23Þ

where we neglected small phase space differences. From
the current experimental data in Table I, we obtain

BðBs → J=ψπ0Þ ≥ 4.4 × 10−6; ð24Þ
at the 1σ level, and > 1.1 × 10−6 at the 90% CL. This is to
be compared to the SM expectation of Oð10−7Þ. The
experimental uncertainties dominate this result, and are
larger than the theoretical uncertainty in Eq. (23).
One can use Eq. (17) to derive an allowed region in the

ðρ̄; η̄Þ plane. In Fig. 1 we show this constraint from the

TABLE I. The experimental data used, from Ref. [23].

Observable Measurement

BðBd → J=ψK0Þ ð8.63� 0.35Þ × 10−4

BðBþ → J=ψKþÞ ð10.28� 0.40Þ × 10−4

ΔK −ð5.0� 2.8Þ × 10−2

BðBd → J=ψπ0Þ ð1.74� 0.15Þ × 10−5

BðBþ → J=ψπþÞ ð4.04� 0.17Þ × 10−5

Δπ −ð3.7� 4.8Þ × 10−2

SKS
0.682� 0.021

Sπ0 −0.93� 0.15

FIG. 1 (color online). Constraint from Eq. (17) at �1σ
(transparent dark blue) and �2σ (transparent light blue) in the
ðρ̄; η̄Þ plane, overlaid on the SM CKM fit [24].
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current data, compared to other bounds. The sizable
uncertainty of ΔK leads to a somewhat loose constraint.
The �1σ range at present tends to favor a slightly larger β,
and is in better agreement with measurement of jVubj from
inclusive rather than exclusive semileptonic B decays.
More precise measurements of SKS

, Sπ0 , ΔK , and Δπ are
needed to improve the statistical significance of this
constraint and to decide if there is an interesting tension
with the SM CKM fit.
Future data will also give other means to explore whether

the uncertainties in β are under control and to gain
confidence about bounds on the Vub contamination. For
example, (i) the Δπ observable in Eq. (14) only receives an

Að0Þ
u contribution from the 15 representation, so more

precise data can be used to constrain the size of this matrix
element, which also contributes to ΔSKS

, (ii) the direct CP
asymmetries can be used to extract the imaginary parts of

the Að0Þ
u;f=Ac amplitude ratios, which provide a lower bound

on the jAu=Acj2 terms in Δπ , and (iii) when jVubj
measurements improve, comparison of the SM CKM fit
excluding SKS

with Eq. (17) will provide independent
information on possible origins of the tension in Fig. 1.
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