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We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC)
methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that
appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous
mathematical constraints on the determinants involving matrices that lie in the split orthogonal group
provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding
principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum
Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to
simulate physical systems that were previously prohibitive because of the sign problem.
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One of the biggest challenges to the classical simulation
of quantum systems is the infamous fermion sign problem
of quantum Monte Carlo (QMC) simulations. It appears
when the weights of configurations in a QMC simulation
may become negative and therefore cannot be directly
interpreted as probabilities [1]. In the presence of a sign
problem, the simulation effort typically grows exponen-
tially with system size and inverse temperature.
While the sign problem is nondeterministic polynomial

hard [2], implying that there is little hope of finding a generic
solution, this does not exclude ad hoc solutions to the sign
problem for specific models. For example, one can some-
times exploit symmetries to design appropriate sign-
problem-free QMC algorithms for a restricted class of
models [3]. However, it is unclear how broad these classes
are and it is in general hard to foresee whether a given
physical model would have a sign problem in any QMC
simulations. The situation is not dissimilar to the study of
many intriguing problems in the nondeterministic polyno-
mial complexity class, where a seemingly infeasible prob-
lem might turn out to have a polynomial-time solution
surprisingly [4].
A fruitful approach in pursuing such specific solutions is

to design Hamiltonians that capture the right low energy
physics and allow sign-problem-free QMC simulations at
the same time, called “designer” Hamiltonians [5]. This
naturally calls for design principles. For bosonic and
quantum spin systems a valuable guiding principle is the
Marshall sign rule [6,7], which ensures non-negative
weight for all configurations. The design of the sign-
problem-free fermionic Hamiltonians is harder. The meth-
ods of choice for fermionic QMC simulations are the
determinantal QMC approaches, including traditional dis-
crete-time [8] and new continuous-time approaches [9–13].
Both approaches map the original interacting system to free

fermions with an imaginary-time dependent Hamiltonian.
The partition function is then written as a weighted sum of
matrix determinants after tracing out the fermions [8,9,12]:

Z ¼
X
C

fC det ½I þ T e−
R

β

0
dτHCðτÞ�; ð1Þ

where fC is a c number and HCðτÞ is an imaginary-time
dependent single-particle Hamiltonian matrix (whose
matrix elements denote hopping amplitudes and on-site
energies on a lattice), both depending on the Monte Carlo
configuration C. T denotes the time ordering and I is the
identity matrix. The appearance of the matrix determinant
complicates the analysis of the sign problem because it is
often not straightforward to see the sign of the Monte Carlo
weight of a given configuration [14,15], and the sign of the
determinant is related [16] to the Aharonov-Anandan phase
[17] of the imaginary-time evolution. The situation is
further complicated by the fact that even for a given
physical model the choice of the effective Hamiltonian
HC is not unique (it depends on details of the QMC
algorithm such as whether and how to perform an auxiliary
field decomposition) and the specific choice may affect the
appearance of the sign problem [14,18,19].
One successful guiding principle for fermionic simula-

tions that has been discovered in the context of nuclear
physics [20,21], lattice QCD [22], and condensed matter
physics [23] relies on the time-reversal symmetry (TRS) of
the effective Hamiltonian HC. TRS ensures a non-negative
matrix determinant in Eq. (1) because the eigenvalues of the
matrix necessarily appear in Kramers pairs. A typical
example of this kind is the attractive Hubbard model at
balanced filling of two spin species, where after decom-
position of the interaction term the Monte Carlo weight
even factorizes into the product of two identical matrix
determinants. Additional conditions such as half filling and
bipartiteness of the lattice lead to a solution of the sign
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problem for the repulsive Hubbard model. See Refs. [23,24]
for a thorough discussion and Refs. [25–27] for several
recent applications of the TRS principle.
Unfortunately, besides the quite intuitive TRS principle

[20–23], a broad criterion for the sign of the matrix
determinant is still lacking. Recent progress on solving the
sign problem in a class of fermionic models using the
continuous-time quantum Monte Carlo approach [28] and
the Majorana representation [29] provides hints about
such a guiding principle. For example, one could search
for real-antisymmetric matrices with non-negative deter-
minant [28,30], or try to split the fermionic operator into
Majorana fermions for a potential cancellation of the sign
[29]. However, compared to the TRS principle [20–23],
both approaches are still not enlightening enough to serve
as a guiding principle. Moreover, because of the different
appearances of the two solutions [28,29], it is unclear
what the connection between them is and whether there is
a deeper underlying reason for such solutions.
In this Letter, we present a guiding principle that not only

unifies the two recent solutions to the sign problem [28,29],
but also suggests a general strategy that enables us to
discover solutions to the sign problem for a broader class of
fermionic models. The guiding principle exploits the
symmetry of the effective Hamiltonian HC and conse-
quently the Lie group structure of the evolution matrix

T e−
R

β

0
dτHC . In particular, the split orthogonal group

Oðn; nÞ is formed by all 2n × 2n real matrices that preserve
the metric η ¼ diagð1;…; 1|fflfflffl{zfflfflffl}

n

;−1;…;−1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

Þ

MTηM ¼ η: ð2Þ
Similar to the Lorentz group Oð3; 1Þ, a familiar example in
relativistic physics, the Oðn; nÞ group contains four com-
ponents. More explicitly, writing the matrix M in the form
M ¼ ðM11

M21

M12

M22
Þwith n × n subblocks, one has jdetðM11Þj≥1

and j detðM22Þj ≥ 1 [31]. The four components of Oðn; nÞ
can be classified by the signs of detðM11Þ and detðM22Þ,
denoted as O��ðn; nÞ. Different components can only be
connected by improper rotations that change the sign of the
determinant of the subblock M11 or M22. Only the
Oþþðn; nÞ component forms a subgroup because it con-
tains the identity element. The group structure (2) also
appears in the canonical transformation for diagonalizing
general quadratic boson Hamiltonians [32].
Theorem: If M belongs to the split orthogonal group

Oðn; nÞ, then the following statements hold [33–35]:

det ðI þMÞ

8>><
>>:
≥ 0; if M ∈ Oþþðn; nÞ; ð3aÞ
≤ 0; if M ∈ O−−ðn; nÞ; ð3bÞ
0; otherwise: ð3cÞ

This rather strong statement about the definite sign of the
matrix determinant, no matter whether it is positive or

negative, is invaluable for the determinantal QMC simu-
lations. Furthermore, we have the following.
Corollary: Given an arbitrary number of real matrices

Ai that satisfy ηAiη ¼ −AT
i , we have [33,34]

det

�
I þ

Y
i

eAi

�
≥ 0: ð4Þ

The proof follows immediately by noticing that Ai lies in
the Lie algebra of the groupOðn; nÞ [37]. Each factor of the
matrix product

Q
ie

Ai is an exponential from the Lie algebra
to the Lie group Oðn; nÞ in the identity component; thus,
Eq. (4) is a consequence of Eq. (3a). Note that the form of
the matrix determinant of Eq. (4) resembles the weight that
appears in the determinantal QMC calculations (1) [8,9,12].
Before moving on, we comment on the general relevance

of Eqs. (3) and (4) to physical problems. On a bipartite
lattice, the parities of the sublattices naturally provide
the metric η appearing in Eq. (2). To further reveal
its physical meaning, we write an element in the Lie algebra
Ai ¼ ðCi

BT
i

Bi
Di
Þ explicitly. In the special case of Ci ¼ Di ¼ 0,

Ai can be recognized as a bipartite single-particle
Hamiltonian and the condition on Ai has appeared in
Eq. (4) of Ref. [28]. The corollary (4) states that the
partition function of such a bipartite imaginary-time de-
pendent noninteracting system is non-negative [38].
Moreover, in general the matrix Ai does not need to be
symmetric. The condition on Ai only requires CT

i ¼ −Ci

and DT
i ¼ −Di; thus, it provides more flexibilities in

designing the QMC approaches.
To see how the above rigorous mathematical statements

apply to determinantal QMC simulations of physical
systems, we consider first the spinless t − V model on a
bipartite lattice

Ĥ ¼
X
i;j

ĉ†i Kijĉj þ
X
hi;ji

�
V

�
n̂in̂j −

n̂i þ n̂j
2

�
− Γ

�
: ð5Þ

Here ĉ†i and ĉi are fermion creation and annihilation
operators and n̂i ¼ ĉ†i ĉi is the occupation number operator
on site i. There are 2n lattice sites, which split into two
sublattices A and B. In accordance with the metric η, we
sort the sites by placing all sites inA before those in B. The
bipartite hopping matrix K has zeros on the diagonal and is
real symmetric; therefore, it satisfies the requirement
ηKη ¼ −KT of the corollary [28]. The second term of
Eq. (5) denotes repulsive interactions between nearest
neighbors hi; ji (belonging to different sublattices) and
we introduced a constant shift Γ, which will play a crucial
role in later discussions.
We employ the continuous-time quantum Monte Carlo

(CT-QMC) framework [9–12] in the following analysis.
This approach is free from time discretization errors, and is
as efficient [12] and more flexible and powerful [13,40]
than the discrete-time counterpart [8]. Furthermore, the
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discrete-time algorithms can be derived as a restricted
version of the CT-QMC methods on an equidistant grid of
imaginary-times [41] and our results apply to them as well.
We rewrite the Hamiltonian (5) as Ĥ ¼ Ĥ0 þ

P
hi;jiv̂ij and

perform an expansion in the interaction term [9]

Z ¼ Trðe−βĤÞ ¼
X∞
k¼0

X
hi1;j1i

� � �
X
hik;jki

Z
β

0

dτ1 � � �

×
Z

β

τk−1

dτkTr½e−ðβ−τkÞĤ0ð−v̂ikjkÞ � � � ð−v̂i1j1Þe−τ1Ĥ0 �:

ð6Þ
At this point there are multiple ways to proceed, which result
in distinct CT-QMC algorithms, differing in efficiency and
the use of auxiliary fields (see Ref. [13] for an overview). In
particular, we choose the following auxiliary field decom-
position of the interaction term to reveal the connections of
various solutions to the sign problem [28,29]:

−v̂ij ¼
Γ
2

X
σ¼�

exp ½σλðĉ†i ĉj þ ĉ†j ĉiÞ�; ð7Þ

where λ ¼ acosh½1þ V=ð2ΓÞ� is a real number for repulsive
interaction V and positive shift Γ. The decomposition (7) is
valid because the operator ô ¼ ðĉ†i ĉj þ ĉ†j ĉiÞ satisfies ô ¼
ô3 and ô2 ¼ ô4 ¼ n̂i þ n̂j − 2n̂in̂j when i ≠ j. Compared
to the conventional decompositions routinely employed in
the determinantal QMC simulations [9,42], the auxiliary
field in Eq. (7) couples to fermion hoppings instead of the
density operators [43,44]. This is one of the key ingredients
to avoiding the sign problem. In retrospect, this choice can
be motivated by the corollary (4).
Plugging Eq. (7) into Eq. (6), the square bracket becomes

a product of exponentials of fermion bilinear operators. The
trace therefore acquires an appealing physical meaning: it is
the partition function of an imaginary-time dependent non-
interacting system, which evolves alternatively under the free
part of the original Hamiltonian Ĥ0 and hopping with an
amplitude σλ between the sites i, j that belong to different
sublattices. Tracing out these free fermions, one obtains

Z ¼
X∞
k¼0

�
Γ
2

�
k X
hi1;j1i

� � �
X
hik;jki

X
σ1¼�

� � �
X
σk¼�

Z
β

0

dτ1 � � �

×
Z

β

τk−1

dτk det ½I þ e−ðβ−τkÞKeΛ
σk
ikjk � � � eΛ

σ1
i1j1e−τ1K�; ð8Þ

where the matrix ðΛσ
ijÞlm ¼ σλðδliδmj þ δljδmiÞ according to

the exponential factor of Eq. (7). Equation (8) is in the
general form of Eq. (1) and the matrix determinant has the
form of Eq. (4). The interaction vertex eΛ

σ
ij performs a

hyperbolic rotation ð cosh λ
σ sinh λ

σ sinh λ
cosh λ Þ in the relevant 2 × 2 block

involving the sites i, j. Importantly, both the original
hopping matrix K and the auxiliary Hamiltonian matrix
Λσ
ij satisfy the condition of the corollary (4). The weight (8)

is therefore non-negative and there is no sign problem. The
Monte Carlo method can be used to sample the summations
over the interaction bonds and the auxiliary fields as well as
the integrations over the imaginary times on an equal
footing, see Refs. [12,13] for details about efficient
Monte Carlo simulation of Eq. (8).
Using the auxiliary field to decouple the interaction

vertex is not the only way to formulate a sign-problem-free
QMC approach for the model (5). The theorem (3b) and
(3c) applies to other components of the Oðn; nÞ group and
connects the above solution to the solutions based on the
continuous-time interaction expansion method (CT-INT)
[28,30] and the related but more efficient linear in β method
(LCT-INT) [12,13]. These methods correspond to special
choices of the shift Γ ¼ −V=4 [45], which results in a
purely imaginary coupling strength λ ¼ iπ in Eq. (7). The
vertex matrix eΛ

σ
ij thus has the form ð−1

0
0
−1Þ in the relevant

2 × 2 block independent of the auxiliary field, which is
equivalent to rewriting the interaction term v̂ij ¼
ðV=4Þeiπðn̂iþn̂jÞ in the LCT-INT approach [12,13]. The
vertex matrix maps the evolution matrix in Eq. (8) back
and forth between the Oþþðn; nÞ and the O−−ðn; nÞ
components, because the sites i, j belong to different
sublattices and the vertex matrix flips the signs of both
detðM11Þ and detðM22Þ. The matrix determinant in Eq. (8)
is thus nonpositive for an odd number of vertices according
to Eq. (3b). However, the negative value Γ ¼ −V=4 cancels
this sign due to a prefactor ðΓ=2Þk in the weight. Hence, the
theorem (3) ensures the absence of a sign problem [46] in
the auxiliary-field-free (L)CT-INT simulations [13,28,30].
To take full advantage of the corollary (4), one can

further consider long-range interactions in the model (5),
e.g., attractive interaction between sites belonging to the
same sublattice [28,29]. We decouple these interactions as

−v̂ij ¼
Γ
2

X
σ¼�

exp ½σλðĉ†i ĉj − ĉ†j ĉiÞ�: ð9Þ

The coupling strength λ ¼ acos½1þ V=ð2ΓÞ� is real for
attractive interactions and any positive shift Γ ≥ jVj=4. The
effective single-particle Hamiltonian in the exponential of
Eq. (9) is antisymmetric and connects sites in the same
sublattice; thus, it satisfies the requirement of the corollary
(4). There is no sign problem either [47].
Alternatively, in Eqs. (7) and (9) one can split a fermion

into two Majorana operators [29] and identify two com-
plex-conjugate factors in the Monte Carlo weight [48]. It is
however clear that the unconventional decoupling in the
hopping channels in Eqs. (7) and (9) to respect the corollary
is the underlying reason for a non-negative matrix deter-
minant. In light of Eq. (4), rewriting the fermions using
Majorana operators is unnecessary in the Monte Carlo
simulations. Nevertheless, the Majorana representation [29]
is an ingenious way to prove the corollary in this instance.
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We have shown that the theorem (3) unifies the recent
solutions of the sign problem [28,29] as different choices of
the constant shift Γ. The corollary (4) is particularly
instructive as it suggests that one just needs to decompose
the original interacting model into free effective Hamiltonians
that satisfy the condition of Eq. (4) in order to avoid the sign
problem. The mechanism of solving the sign problem using
Eqs. (3) and (4) goes beyond the previous understandings
based on the TRS principle [20–23]. This can be easily seen
from the fact that the real eigenvalues of the matrix I þM are
not necessarily doubly degenerate as required by the Kramers
theorem [50].
As a further application [33] we consider the following

two-flavor Hubbard model on a bipartite lattice:

Ĥ ¼
X

α¼f↑;↓g

X
i;j

ĉ†iαK
α
ijĉjα þ

X
i

v̂i;

v̂i ¼ U

�
n̂i↑n̂i↓ −

n̂i↑ þ n̂i↓
2

�
− Γ; ð10Þ

where the real hopping matrix Kα connects the same flavor
α on different sublattices. The model (10) covers a variety
of interesting physical systems that were previously inac-
cessible for determinantal QMC simulations. For example,
the choice K↓ ¼ rK↑ with a ratio 0 < r < 1 realizes the
asymmetric Hubbard model, which was implemented
recently in a one-dimensional optical lattice with a tunable
ratio r [51]. On the other hand, one can also choose to have
spatially anisotropic hopping amplitudes for each flavor,
therefore to realize Hubbard models with mismatched
Fermi surfaces [52].
All these cases break the SU(2) spin symmetry as well

as the time-reversal symmetry, and therefore are not
guaranteed to be sign-problem free according to the
conventional TRS principle [21–23]. However, one can
now solve the sign problem using the insights provided by
the corollary (4). We first consider the U > 0 case for
simplicity. Enlightened by the new understanding, we
decouple the interaction term Eq. (10) similarly to Eq. (7)
and obtain an auxiliary field coupled to the local spin flip
ðĉ†i↑ĉi↓ þ ĉ†i↓ĉi↑Þ, which connects different flavors on the
same site. Thus, for the ordering of the spin orbital
(A↑, B↓; B↑, A↓), it is easy to see the effective
Hamiltonians are bipartite and symmetric, and therefore
satisfy the condition of the corollary. This shows that an
auxiliary field coupled to the x component of the spin
operator is sign-problem free for the model (10) [53]. The
attractive case can be studied without a sign problem by
performing a particle-hole transformation to the model.
Alternatively, one can perform the decomposition accord-
ing to Eq. (9) for attractive interactions; thus, we have a
sign-problem-free simulation with the auxiliary field
coupled to the y component of the spin operator.
Moreover, there is no sign problem even when we

explicitly add spin-flip terms in the Hamiltonian as long
as the hopping matrix satisfies the condition of Eq. (4).
This covers a large class of compass Hubbard models
[54], which are relevant to multiorbital and ultracold atom
systems [55–57].
Using the special choice of Γ ¼ −U=4, the above

solution reduces to the (L)CT-INT formulation and the
determinant of the two flavors factorizes into two parts in
the absence of the single-particle spin-flip terms. Even
though the two determinants are not necessarily equal due
to the broken TRS, the theorem (3) ensures that they have
the same sign because the evolution matrix of the two
flavors lies in the same component ofOðn; nÞ. In contrast to
the case of spinless fermions, the vertex matrix of v̂i ¼
ðU=4Þeiπðn̂i↑þn̂i↓Þ can bring the evolution matrix into all four
components of the Oðn; nÞ group since each vertex matrix
changes the sign of either detðM11Þ or detðM22Þ of both
flavors. The Monte Carlo weights of odd expansion orders
vanish because of Eq. (3c). Although the matrix size in the
LCT-INT simulation is only half of that of the previously
discussed auxiliary field approach, the use of two-vertices
insertion or removal updates [10] in the Monte Carlo
simulation leads to more complicated updates and meas-
urement procedures [58,59]. The auxiliary field approach
may thus be advantageous.
These solutions to the sign problem can also be applied

to projector QMC methods [13,60,61], which sample the
ground state wave-function overlap hΨT je−ΘĤjΨTi instead
of the partition function. One can choose the trial-wave
function jΨTi as the ground state of a single-particle trial
Hamiltonian that fulfills the condition of the corollary (4) to
avoid the sign problem.
All the sign-problem-free models solved by Eqs. (3) and

(4) in this Letter are at half filling on bipartite lattices with
particle number conservation [62]. It will be interesting to
see whether one can even go beyond this constraint.
Conversely, we emphasize that the requirements of
Eqs. (3) and (4) are by no means the necessary conditions
for a sign-problem-free QMC simulation. There should be
more “de-sign” principles of this kind for fermionic
Hamiltonians and quantum Monte Carlo methods. Our
work suggests it is fruitful to exploit the inherent Lie group
and Lie algebra structure in the Monte Carlo weight to
search for such de-sign principles. Incidentally, both the
split orthogonal group and the TRS de-sign principle seem
to be related to the tenfold way classification of random
matrices [63]. It would be interesting to generalize them to
other symmetry classes [64–66] and draw connections to
the recent topological classification of gapped free-fermion
systems [67–69].
Furthermore, the findings reported in this Letter apply as

well to fermions coupled to quantum spins or Z2 gauge
fields. The theorem (3) ensures a matrix determinant with a
definite sign after integrating out fermions as long as the
split orthogonal group structure is respected. This allows us
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to design new sign-free models relevant to lattice gauge
theories [33].
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