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We consider the recent relativistic bit commitment protocol introduced by Lunghi et al. [Phys. Rev. Lett.
115, 030502 (2015)] and present a new security analysis against classical attacks. In particular, while the
initial complexity of the protocol scales double exponentially with the commitment time, our analysis
shows that the correct dependence is only linear. This has dramatic implications in terms of
implementation: in particular, the commitment time can easily be made arbitrarily long, by only requiring
both parties to communicate classically and perform efficient classical computation.
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Over the last decades, which witnessed the rapid
expansion of quantum information, a new trend has
developed: trying to obtain security guarantees based solely
on the laws of physics. Perhaps the most compelling
example is quantum key distribution [1,2] where two
distant parties can exploit quantum theory to extract
unconditionally secure keys provided that they have access
to an untrusted quantum channel and an authenticated
classical channel. However, many cryptographic applica-
tions cannot be obtained only with secure key distribution.
One important example is two-party cryptography, which
deals with the setting where Alice and Bob want to perform
a cryptographic task but do not trust each other. This is in
contrast with key distribution where Alice and Bob
cooperate and fight against a possible eavesdropper.
Two-party cryptography has numerous applications,

ranging from authentication to distributed cryptography
in the cloud. These protocols are usually separated into
building blocks, called primitives. One of the most studied
primitives is bit commitment, which often gives a strong
indication of whether two-party cryptography is possible or
not in a given model of security. For example, many
constructions of bit commitment protocols are secure under
computational assumptions [3–6]. It is then natural to ask
whether quantum theory can provide security for bit
commitment. A general no-go theorem was proved in
1996 by Mayers and Lo-Chau [7,8]. Several attempts were
made to circumvent this impossibility result by limiting the
storage possibilities of the cheating party [9,10]. An
alternative approach to obtain secure primitives, pioneered
by Kent [11], consists in combining quantum theory with
special relativity, more precisely with the physical principle
that information cannot propagate faster than the speed of
light. This has opened the way to new, secure, bit commit-
ment protocols [12–15], which have been recently imple-
mented [16,17]. In these protocols, both parties have
several agents located far from each other, but each one
standing close to an agent of the opposing party. The
protocols then work by carefully synchronizing the action

of each agent in such a way that the agents of a cheating
party do not have the time to coordinate and adapt their
strategy on the fly. A main caveat, however, is that the
commitment time is not arbitrarily long in general but
depends critically on the physical distance between the
agents or on the number of agents involved.
A major open question of the field is therefore to design a

secure practical bit commitment protocol, for which the
commitment time can be increased arbitrarily at a reason-
able cost in terms of implementation complexity. In this
Letter, we examine a protocol due to Lunghi et al. [18],
which is itself adapted from an earlier proposal of Simard
[19]. In their recent breakthrough paper, Lunghi et al.
showed that it was possible to extend the commitment time
by using a multiround generalization of the Simard pro-
tocol, and established its security against classical adver-
saries. Unfortunately, the required resources scale double
exponentially with the commitment time, making the
protocol impractical for realistic applications. For instance,
with the optimal configuration on the Earth (meaning that
each party has agents occupying antipodal locations on the
Earth), the commitment time is limited to less than a
second. Here, we provide a new security analysis establish-
ing that the dependence is in fact linear, provided that the
dishonest player is classical. This implies that arbitrary long
commitment times can be achieved even if both parties are
only a few kilometers apart. We first present the relativistic
bit commitment scheme studied by Lunghi et al. and we
will then establish its security.
The Lunghi et al. protocol.—We first recall the protocol

as well as the security definitions used and timing con-
straints. Both players Alice and Bob have agents A1, A2

and B1, B2 present at two spatial locations (1) and (2). Let
us consider the case where Alice makes the commitment.
The protocol (followed by honest players) consists of four
phases: preparation, commit, sustain, and reveal. The
sustain phase is itself composed of many rounds, and each
such round involves a pair of agents [alternating between
locations (1) and (2)] referred to as the active players.
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Overall the bit commitment protocol goes as follows.
(1) Preparation phase. A1, A2 (B1, B2) share k random
numbers a1;…; ak (b1;…; bk) ∈ Fq, for even k. Here, q is a
prime power pn for some prime p and Fq refers to the
Galois field of order q. (2) Commit phase. B1 sends b1
to A1, who returns y1 ¼ a1 þ ðd � b1Þ, where d ∈ f0; 1g
is the committed bit. (3) Sustain phase. At round i, active
Bob sends bi ∈ Fq to active Alice, who returns
yi ¼ ai þ ðai−1 � biÞ. (4) Reveal phase. A1 reveals d and
ak to B1. B1 checks that ak ¼ yk þ ðak−1 � bkÞ. Here, þ
and � refer to the field addition and multiplication in Fq.
Security definition.—We follow the definitions of

Ref. [18]. The security requirements differ in the case of
honest Alice and honest Bob. In the former case, Bob
should not be able to guess the committed value right
before the reveal phase. The protocol should therefore be
hiding, and it will actually be perfectly hiding here,
meaning that Bob cannot guess the committed bit value
better than with a random guess. Security for honest Bob
is defined differently: the protocol should be binding,
meaning that Alice should not be able to decide the value
of the committed bit after the commit phase. We follow the
standard definition for bit commitment (also used in
Ref. [18]). Let pd be the probability that the Alice
successfully reveals bit value d. We say that the protocol
is ε binding if p0 þ p1 ≤ 1þ ε.
Timing constraints for the protocol.—The two pairs

ðA1;B1Þ and ðA2;B2Þ are at a certain distance D (see
Fig. 1). At each round j, there is an active (Alice, Bob) pair
that performs the protocol while the other, passive, pair
waits. At the end of round j, they switch roles and perform
round jþ 1.
We require that round j finishes before any informa-

tion about bj−1 reaches the other Alice. For any j, we
therefore have the following: active Alice has no infor-
mation about bj−1. This means that yj is independent of
bj−1. This will be crucial in order to show the security of
the protocol.
One important thing to notice is that d, the bit Alice

wants to reveal, can be decided just after the commit phase.
Therefore, y1 is independent of d but all the other messages
y2;…; yk can depend on d.

Our result.—Our main contribution is to present an
improved security proof for this protocol. In particular, this
allows for implementations of this protocol that last for an
(almost) arbitrary amount of time while the previous
implementations were only secure for (much less than) a
second [18].
In order to prove the security of the protocol, we present

an inductive argument on the number of rounds of the
protocol and show that at each round, the cheating
parameter for Alice increases by at most 2−ðN−1Þ=2, where
N is the number of transmitted bits per round. Interestingly,
the proof involves the study of the CHSHq game, which is a
generalization of the CHSH game in the field Fq. Lunghi
et al. also studied an extension of the CHSHq game, which
they called the “number on the forehead game.” However,
their security proof quickly becomes inefficient as the
number of rounds increases.
The CHSHq game.—A crucial tool of our security proof

is the analysis of the CHSHq game introduced by Buhrman
and Massar [20]. This game is a natural generalization of
the CHSH game to the field Fq, where two noncommu-
nicating parties Alice and Bob are each given an input x and
y chosen uniformly at random from Fq, and must output
two numbers a; b ∈ Fq. They win the game whenever the
condition aþ b ¼ x � y is satisfied. The CHSHq game has
been much less studied in the literature [18,20,21] than its
q ¼ 2 variant (see Ref. [22] for a recent review on non-
locality). A recent result by Bravarian and Shor [23]
establishes rather tight bounds on the classical and quantum
values of the CHSHq game. In particular, for prime or odd
powers of prime q, the classical and quantum values ω and
ω� of the game, corresponding, respectively, to the maxi-
mum winning probabilities for players sharing randomness
or given access to a bipartite entangled state, satisfy

ωðCHSHqÞ ¼ Oðq−1=2−ε0Þ;

ω�ðCHSHqÞ ≤
q − 1

q
1ffiffiffi
q

p þ 1

q
;

for some absolute constant ε0 > 0.
These results hold only for a uniform input distribution.

In order to use our inductive technique, we need to bound
the value of this game for unbalanced inputs. It appears that
the result of Bavarian and Shor does not easily extend to
this setting. We therefore developed new proof techniques
that are based on using nonsignaling constraints for the
study of classical strategies.
Let us consider a family of games, denoted by

CHSHqðpÞ, where games are parametrized by the proba-
bility distribution fpxgx∈Fq for Alice’s input x satisfying the
constraint maxxpx ≤ p. For these games, Bob’s input dis-
tribution is uniform over Fq. In particular, CHSHqð1=qÞ ¼
fCHSHqg. The special case with q ¼ 2 was considered in
Ref. [21] where the following results are proved:

FIG. 1 (color online). Description of rounds j and jþ 1 of the
bit commitment protocol. Both rounds take place at spatial
locations separated by a distance D.
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ω(CHSH2ðpÞ) ¼ ð1þ pÞ=2;
ω�(CHSH2ðpÞ) ≤

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ð1 − pÞ2

q i
=2:

Note that for q ¼ 2, Alice’s input distribution is entirely
determined by the value of p. In order to prove upper
bounds on the value of games in CHSHqðpÞ, we show that
if Alice and Bob can win such a game with high probability
then Alice has a method to obtain some information about
Bob’s input, something that is prohibited by the non-
signaling principle. This technique does not directly extend
to the quantum setting because Alice’s method requires her
to perform her game strategy for different inputs, which
could disturb the underlying shared entangled state.
Our main technical result is an upper bound on the

classical value for games in CHSHqðpÞ.
Lemma 1: For any game G ∈ CHSHqðpÞ, we have

ωðGÞ ≤ pþ
ffiffiffi
2

q

s
: ð1Þ

Proof.—Fix a game G ∈ CHSHqðpÞ. As usual, the
classical value of the game can always be achieved with
a deterministic strategy, meaning that without loss of
generality, Alice and Bob’s strategies can be modeled by
functions f and g, namely, a ¼ fðxÞ and b ¼ gðyÞ. Define
the variable ryx equal to 1 if fðxÞ þ gðyÞ ¼ x � y, and 0
otherwise.
Our proof is by contradiction: if ωðGÞ is too large,

then Alice could use her box to obtain some information
about y, which is prohibited by nonsignaling. More
precisely, consider the following strategy for Alice: pick
a random pair of distinct inputs x; x0 according to the
distribution fpgx∈Fq , i.e., with probability pxpx

0=d where
d ¼ P

x≠x0pxpx
0, and output the guess ŷ for y defined by

ŷ ¼ ½fðxÞ − fðx0Þ� � ðx − x0Þ−1. Denote by Sy the proba-
bility of correctly guessing the value y. Nonsignaling
imposes that Ey½Sy� ¼ 1=q, since the value y is uniformly
distributed in Fq.
On the other hand, we note that if the game G is won for

both inputs ðx; yÞ and ðx0; yÞ, then Alice’s strategy outputs
the correct value for y. Indeed, winning the game implies
that fðxÞ − fðx0Þ ¼ ðx − x0Þ � y and therefore ŷ ¼ y. One
immediately obtains a lower bound on Sy:

Sy ≥
1

d

X
x≠x0

pxr
y
xpx

0ryx0 ≥
X
x≠x0

pxr
y
xpx

0ryx0 :

Consider the quantity ωy ¼ P
xpxr

y
x. It satisfies

ðωyÞ2 ≤
X
x

p2
xðryxÞ2 þ 2Sy ¼

X
x

ðpxÞ2ryx þ 2Sy

≤ pωy þ 2sy;

where we used that ðpxÞ2 ≤ ðmaxxfpxgÞpx ≤ ppx. This
implies that

ωy ≤
1

2

�
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 8Sy

q �
≤ pþ ffiffiffiffiffiffiffi

2Sy
p

;

where the last inequality results from the concavity of the
square-root function.
Finally, ωðGÞ ¼ Ey½ωy� by definition, and therefore

ωðGÞ ≤ pþ 2Ey½
ffiffiffiffiffi
Sy

p � ≤ pþ
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
Ey½Sy�

q
≤ pþ

ffiffiffiffiffiffiffiffi
2=q

p
;

which concludes the proof. □

Security of the protocol.—The perfect hiding property of
this protocol has already been discussed in Ref. [18].
Indeed, at any point before the reveal phase, the Bobs have
no information about the committed bit d. Our main
contribution is the following binding property of this
protocol.
Theorem 1: This relativistic bit commitment scheme is

ε binding with ε ≤ 2k
ffiffiffiffiffiffiffiffi
2=q

p
, where k is the number of

rounds used in the protocol.
Proof.—We present here the main elements of the proof.

The technical details can be found in the Appendix. Let us
fix a cheating strategy for Alice, which consists of the
messages yj that the agents will send depending on the
current history and the bit d she wants to decommit to.
During the reveal phase, Alice successfully reveals d if A1

sends the correct ak to Bob. For a fixed cheating strategy, ak
is a function of d; b1;…; bk. However, during the reveal
phase, A1 has no information about bk. Therefore, A1 will
not be able to reveal ak if it has too much dependence in bk
on average on d. We show that this is indeed the case.
Let Pd

j be the maximal probability that the passive
players guesses aj, given d. We have by definition

P0
k þ P1

k ¼ 1þ ε:

In order to prove our statement, we show the following.
(i) P0

1 þ P1
1 ≤ 1þ 2

ffiffiffiffiffiffiffiffi
2=q

p
.

(ii) For any d and j, Pd
j ≤ Pd

j−1 þ
ffiffiffiffiffiffiffiffi
2=q

p
.

To prove the first point, the idea is to reduce A2’s
strategy for guessing a1 into a strategy for CHSHqð1=2Þ.
A1 receives b1 and outputs y1, which is independent of d.
A2 knows d and outputs a1.A2 outputs the correct a1 when
a1 þ y1 ¼ d � b1. For an average d, this can happen with
probability at most CHSHqð1=2Þ ≤ 1

2
þ ffiffiffiffiffiffiffiffi

2=q
p

. Therefore,
we have

1

2
ðP0

1 þ P1
1Þ ≤ CHSHqð1=2Þ ≤

1

2
þ

ffiffiffiffiffiffiffiffi
2=q

p
;

which gives the desired result.
Similarly, fix a round j and d. We can reduce passive

Alice’s strategy for guessing aj to a strategy for winning
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CHSHqðPd
j−1Þ. Indeed, active Alice knows bj and

outputs yj. Passive Alice knows aj−1 and outputs a
guess aj. She outputs the correct value if and only
if aj þ yj ¼ bj � aj−1.
This corresponds to an instance of CHSHq where bj ∈

Fq is random and where active Alice (we consider here
active Alice at round j, which is the passive Alice at round
j − 1) can guess aj−1 with probability Pd

j−1. This means that
we can reduce passive Alice’s strategy for guessing aj to a
strategy for winning a certain game in CHSHqðPd

j−1Þ.
Using Proposition 1 proven in the Supplemental Material
[24], we obtain Pd

j ≤ Pd
j−1 þ

ffiffiffiffiffiffiffiffi
2=q

p
. Putting all this

together, we can conclude that P0
k þ P1

k ¼ 1þ 2k
ffiffiffiffiffiffiffiffi
2=q

p
. □

Experimental perspectives and open questions.—Let us
discuss the security of the protocol in realistic conditions.
Theorem 1 shows that ε

ffiffiffiffiffiffiffiffi
q=8

p
rounds can be performed for

a given level of security ε. In particular, if the distance
between A1=B1 andA2=B2 is D, then the commitment can
be sustained for a time

T ¼ ðD=cÞε
ffiffiffiffiffiffiffiffi
q=8

p
;

where c is the speed of light. In particular, provided that
q ≫ 1=ε2, the commitment time can be made arbitrary
long. For instance, taking 128 bits of security, i.e.,
ε ¼ 2−128, and q ¼ 2350 gives T ≈ 5 × 1013ðD=cÞ, that
is, approximately 200 yr for a distance d ¼ 100 km. In
this example, the messages sent at each round only consist
of 350 bits.
It is also possible to reduce the distance between A1=B1

and A2=B2, at the condition that both the computation
time and the communication time between Ai and Bi
remain negligible compared to D=c. This is necessary
to enforce the nonsignaling condition of the CHSHq
game. For instance, if the computation time is on the order
of a microsecond, then the distance D should be at
least 300 m.
Let us conclude by mentioning a few open questions.

Certainly the most pressing one concerns the security of the
protocol against quantum adversaries. A first step in that
direction would be to obtain tight upper bounds on the
entangled value ω� of games in CHSHqðpÞ. Another
outstanding problem is whether the bit-commitment pro-
tocol of Ref. [18] can be used to obtain a protocol for
oblivious transfer [25]. In particular, this would pave the
way for arbitrary two-party cryptography with security
based on the nonsignaling principle. Finally, it would be
particularly interesting to understand whether two agents
are indeed necessary for each player, or whether the second
agent could, for instance, be replaced by assuming that the
spatial positions of Alice and Bob are known.

Note added.—In an independent and concurrent work, Fehr
and Fillinger [26] proved a general composition theorem
for two-prover commitments that implies a similar bound
on the security of the Lunghi et al. protocol as the one
derived here.
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