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We demonstrate extraction of randomness from spontaneous-emission events less than 36 ns in the past,
giving output bits with excess predictability below 10−5 and strong metrological randomness assurances.
This randomness generation strategy satisfies the stringent requirements for unpredictable basis choices
in current “loophole-free Bell tests” of local realism [Hensen et al., Nature (London) 526, 682 (2015);
Giustina et al., this issue, Phys. Rev. Lett. 115, 250401 (2015); Shalm et al., preceding Letter, Phys. Rev.
Lett. 115, 250402 (2015)].

DOI: 10.1103/PhysRevLett.115.250403 PACS numbers: 03.65.Ud, 03.65.Ta, 05.40.-a, 42.50.Ct

Quantum nonlocality [1] is one of the most striking
predictions to emerge from quantum theory. Beyond their
fundamental interest, loophole-free Bell tests enable power-
ful “device-independent” information protocols guaranteed
by the impossibility of faster-than-light communication [2].
Bell tests and device-independent protocols employ space-
like separation of measurements to guarantee the non-
locality of correlations [3–8] and the monogamy of
correlations under the no-signaling principle [9–11]. To
be secure, they must close two space-time loopholes: no
basis choice may influence a distant particle (locality
loophole), and the entanglement generation must not
influence the basis choices (freedom-of-choice loophole).
Current efforts [6,7,12–14] to simultaneously close the
detection [4,6,7], locality [3], and freedom-of-choice [5,8]
loopholes require random number generators (RNGs) with
an unprecedented combination of speed, unpredictability,
and confidence [15–17].
Here we combine ultrafast random number generation by

accelerated laser phase diffusion [18–20] with real-time
randomness extraction and metrological randomness assur-
ances [21] to produce RNGs suitable for loophole-free Bell
tests. Because the laser phase diffusion is driven by effects
including spontaneous emission that are unpredictable both
in quantum theory and in an important class of stochastic
hidden variable theories, the source can be used to address
the “freedom-of-choice” loophole [17]. Using a detailed
and validated model of the signal generation process, we
show the effectiveness of parity-bit randomness extraction
of this source. Under paranoid assumptions, we infer excess
predictability below 10−5 at 6σ statistical confidence for
output based on phase-diffusion events less than 36 ns old.
A statistical analysis based on 2.3 Tbits of random data
supports the metrological assessment of extreme unpre-
dictability. The results enable definitive nonlocality experi-
ments and secure communications without the need for
trusted devices [9,11,22,23].

As shown in Fig. 1, the locality and freedom-of-choice
loopholes can be closed by spacelike separation of the
random events that determine the basis choice from the
distant detection and from the production of the pairs of
particles, respectively [10]. This requires generation of
randomness in a time window shorter than the light time
between the detectors. Closing the “detection loophole”
requires high efficiency and motivates protocols very
sensitive to predictability of the basis choices. Both experi-
ments employing 100% efficient “event-ready” detection
[24] and those employing high-efficiency photodetection
(Refs. [25,26]) are expected to require excess predictabil-
ities ϵ below a few times 10−5 [17].
Time and/or frequency metrology, e.g., jitter measure-

ments against stabilized oscillators, are routinely used
to determine timing with sub-ns precision and accuracy,

FIG. 1 (color online). Space-time diagram for the production
of random numbers in a loophole-free Bell scenario. As shown,
up to k raw bits can be generated in an interval that is spacelike
separated from both (i) the pair generation and (ii) the distant
measurement. Laser pulses ( ) with random phases ϕi are
converted into raw random bits di and extracted bits xi by a
running XOR ð⊕Þ calculation.
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allowing reliable identification of spacelike separated
events. Achieving similar assurances for unpredictability
poses a distinct challenge. For fundamental reasons, no test
on the output of a RNG can demonstrate randomness, and
statistical characterization of the RNG process becomes the
critical task. Here we develop statistical metrology for a
short-delay RNG, in analogy to earlier work with high-
throughput RNGs [19,21,27]. The excess predictability ϵ is
exponentially reduced by randomness extraction (RE) [28]:
in real time, we compute the parity of several raw bits to
produce one very unpredictable extracted bit for the setting
choice.
The RNG and its behavior are illustrated in Fig. 2.

A single-mode laser diode (LD) is strongly current modu-
lated, going above threshold for about 2 ns of every 5 ns

cycle, to produce a train of optical pulses with very similar
waveforms, as seen in Fig. 2(b). In the time below
threshold, strong phase diffusion randomizes the optical
phase within the laser [29,30] and, thus, the relative phase ϕ
from one pulse to the next. At the time a pulse leaves the
laser, it is already a macroscopic (∼mW) signal, with a
phase that has been fully randomized by the microscopic
process of spontaneous emission. An unbalanced Mach-
Zehnder interferometer (UMZI) converts the train of phase-
random pulses into amplitude-random pulses; see Fig. 2(c).
These are detected with a fast photodiode giving a voltage
signal vðtÞ. A fast comparator and a D-type flip-flop
digitize (with one-bit resolution) the signal at times ti to
give at 200 Mbits= sec raw digital values di ¼ θ(vðtiÞ−
vrefðtiÞ), where θ is the Heaviside step function, and vref
is the comparator reference level. To correct for drifts in
laser power, the reference level is set by feedback from
the raw digital values via an integrator with a 1 ms time
constant. We observe a raw-bit average of hdi ¼
1
2
½1þ 6.9ð1Þ × 10−4�.
An XOR gate and a second flip-flop perform a running

parity calculation updating the output x as xi ¼ xi−1 ⊕ di,
where ⊕ indicates addition modulo 2. This describes a
two-state machine [see Fig. 2(d)] that changes state every
time a new raw bit di ¼ 1. Note that x accumulates the
parity of all preceding raw bits, only k of which will be
spacelike separated from the distant measurement. When
a bit xiþk ¼ xi ⊕ diþ1 ⊕ … ⊕ diþk is used for a basis
setting, xi contributes no spacelike separated randomness,
and the predictability of xiþk will be determined by
diþ1 ⊕ … ⊕ diþk ≡Di;k. Writing the predictability of
di, i.e., the probability of the more likely value, as
PðdiÞ ¼ 1

2
ð1þ ϵiÞ, where ϵi ≥ 0 is the instantaneous

excess predictability, we find (see the Supplemental
Material [31]) that if ϵi ≤ ϵmax, the predictability of the
parity of k bits is bounded as PðDi;kÞ ≤ 1

2
ð1þ ϵkmaxÞ. The

RE output approaches ideal randomness exponentially in k.
We define the “freshness time” to be the interval between

the earliest spontaneous-emission events required for ran-
domizing a bit and the bit’s availability for use. The largest
phase diffusion occurs at the rising edge of the current pulse
when the intracavity photon number is at a minimum [29].
The freshness time for a single bit (τf) measured from a
rising edge of the electrical modulation signal to avail-
ability of the corresponding bit at the output port is
bounded by 10.01 < τf < 11.07 ns with a p value < 1.4 ×
10−6 (see the Supplemental Material [31]). Since we can
use (k − 1) extra bits that are still spacelike separated,
(k − 1) additional clock cycles of 5 ns each are needed. In
total, the freshness time to produce and propagate k bits
from the oldest spacelike separated spontaneous-emission

event to the output port is τðkÞf ¼ τf þ 5 × ðk − 1Þ.
Metrological assurances proceed from the interference

behavior. The instantaneous power reaching the detector is
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FIG. 2 (color online). Random number generation for loophole-
free Bell tests. (a) Experimental schematic. Laser pulses with
random phases ϕi from a distributed feedback laser diode (DFB
LD) are converted to random powers pi by an UMZI detected
with a linear photoreceiver (PIN PD) to give analog voltages vi.
These are one-bit digitized with a comparator and D-type flip-
flop to give raw bits di and summed modulo 2 with an XOR gate
to give extracted bits xi. The output value xiþk includes the parity
of k raw bits, diþ1 to diþk, due to pulses spacelike separated from
the distant measurement and from the entanglement production.
(b),(c) “Persistence mode” visualization of vðtÞ statistics. Warmer
colors show greater frequency; teal histogram on the left axis
describes the voltages sampled inside the time window indicated
in gray. (b) Noninterfering pulses obtained by blocking the long
interferometer path; (c) interfering pulses. (d) Two-state machine
describing the randomness extraction.
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pIðtÞ ¼ pSðtÞ þ pLðtÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pSðtÞpLðtÞ
p

cosϕðtÞ; ð1Þ

where pS and pL are the contributions of the short and
long paths, respectively. We note that optical visibility is
guaranteed by the single-spatial-mode fiber interferometer
and the single-longitudinal-mode laser emission. Including
detection noise and finite bandwidth effects, the electronic
output is (see the Supplemental Material [31])

vðtÞ ¼ vSðtÞ þ vLðtÞ þ vHðtÞ þ vPDðtÞ þ vϕðtÞ; ð2Þ

where (vS) and (vL) are the short- and long-path contri-
butions, respectively, (vH) describes “hangover errors,” i.e.,
delayed contributions from earlier pulses [21], and vPD is
the detector noise. vϕ ¼ 2V

ffiffiffiffiffiffiffiffiffiffi

vSvL
p

cosϕ is the trusted
signal from interference, where V is the visibility after
detection. In Fig. 3, we show the distribution of v sampled
at the moment indicated in Fig. 2(c) and infer V ∼ 95%
using a Monte Carlo simulation of Eq. (2) (see the
Supplemental Material [31]). As shown in Fig. 2(c), we
take a sample < 2 ns after the rising edge occurs, chosen
late in the pulse so that relaxation oscillations have
decayed. The histogram is well modeled by the arcsine
distribution, which describes the cosine of a uniformly
distributed phase.
The trusted randomness of the signal v originates in ϕ,

which between pulses strongly diffuses due to spontaneous
emission, as shown in Fig. 4 (see, also, the Supplemental
Material [31]). The observable ϕmod 2π is for all practical
purposes uniformly distributed on ½0; 2πÞ, is unpredictable
based on prior conditions, and is independent from one
pulse to the next [39], irrespective of any other phase
shifts [21].
With the exception of cosϕ, all contributions to vðtÞ in

Eq. (2) and also vref contain technical noise due to prior
conditions that are not spacelike separated from the distant

detection. We define the sum of these untrusted contri-
butions vc ≡ vS þ vL þ vPD þ vH − vref so that di ¼
θ(vðtiÞ − vrefðtiÞ) ¼ θ(vϕðtiÞ þ vcðtiÞ), with distribution

Pðd ¼ 1Þ≡ P1 ¼
2

π
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
þ vc
2Δvϕ

s

; ð3Þ

where 2Δvϕ ¼ 4V
ffiffiffiffiffiffiffiffiffiffi

vSvL
p

is the peak-to-peak range of vϕ
(see the Supplemental Material [31]). The predictability is
PðdÞ≡max½P1; 1 − P1�≡ 1

2
ð1þ ϵÞ. Bounding the effect

of (vc) on PðdÞ will determine ϵmax, the upper bound on ϵ.
The contributors to (vc) are electronic signals and are

directly measured with a 4 GHz oscilloscope (Agilent
Infinitum model MSO9404A). For example, the variation
of (vS), the signal in the short path of the interferometer, is
measured by blocking the signal from the long path. The
measurement gives access to the signal vS þ vPD þ vO, as
shown in Fig. 2(b). Note that the measurement of the signal
of the short path is not isolated but superimposed to the
noises in the photodetector vPD and the scope (vO). To
obtain the noise from (vS) only, we have to subtract the
contribution from vPD and (vO), both directly measurable.
Statistics of the measurable noise contributions, always
sampled at the same point in the pulse, are given in
Table S1 of the Supplemental Material [31].
To combine the noise sources, we consider three levels of

distrust of the equipment: “ordinary,” “digitizer paranoid,”
and “fully paranoid.” In all cases, the noises are individu-
ally described by the measured statistics of Table S1 in the
Supplemental Material [31], but their assumed correlations
vary. In ordinary distrust, we make the physically reason-
able assumption that the noise sources are uncorrelated. In
digitizer paranoid distrust, we assume the comparator, the
only nonlinear element of the signal chain, chooses vref in

FIG. 3 (color online). Histogram (points) of analog signals v
showing an arcsine distribution, and prediction (line) from a
Monte Carlo simulation of Eq. (2) using measured rms deviations
for all noise sources vS, vL, vPD, vH , and vref , and a fitted
visibility V ¼ 0.955. Voltage scale is offset due to ac coupling.
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FIG. 4 (color online). Observed frequencies (spot size) of field
amplitude jEj and resulting phase dispersion δϕrms over 50 ps,
measured by heterodyne detection with gain Ā for continuous
currents (colors, left to right) 15, 16, 16.5, 17, 17.5, 19 mA. Gray
line shows δϕrms ∝ jEj−1 scaling of spontaneous-emission-driven
phase diffusion.
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function of the other noises so as to maximize the
predictability. In fully paranoid distrust, we assume that
all noise sources are collaborating to maximize predict-
ability. These assumptions lead to normally distributed (vc)
with rms deviations σ shown in Table I. Fluctuations
in (vc) are, in principle, unbounded but rarely exceed a
few standard deviations, a situation that is captured by
assigning confidence bounds, in this case to PðdÞ and
PðxÞ. For example, considering vc ¼ jhvcij þ 6σ as an
upper limit, we compute ϵmax using Eq. (3). Noise
fluctuations will produce a fraction P6σ of the raw bits
with ϵ > ϵmax, where P6σ ≈ 2 × 10−9. The excess predict-
ability of the extracted bit exceeds ϵkmax at most this often,
even assuming maximally correlated raw-bit excess pre-
dictability. See the Supplemental Material [31] for details.
Values of σvc , ϵmax, and (τf) for different k and distrust
levels are shown in Table I and in Fig. 5.
Although no test of the output can assure randomness,

tests can, nonetheless, detect failure to be random.
Because of the low computational capacity of physical
RNGs, imperfections are expected mostly in low-order

correlations. The autocorrelation of the extracted output
ΓxðkÞ≡ hxixiþki − hxii2 is bounded by 4jΓxðkÞj ≤ ϵkmax
and, thus, drops off in the same way as the excess
predictability (see the Supplemental Material [31]). As
shown in Fig. 5, the measured jΓxðkÞj approaches zero
exponentially in k, and already with k ¼ 4 reaches
jΓxðkÞj < 10−6, the statistical limit with 1 Tbits.
As detailed in the Supplemental Material [31], we have

applied statistical tests DIEHARDER [40], NIST SP800-22 [41],
and TESTU01 ALPHABIT battery [42] to strings of extracted
data up to 1 Tbits in length. To study a given k, we first
generate a distilled string zi ≡ xik; i.e., fzg is a k-fold
subsampling of fxg. We observe that ALPHABIT, which is
designed to test physical RNGs, is as sensitive as other
tests and runs much faster. Already with k ¼ 3 extraction,
ALPHABIT finds no significant patterns in ∼2.3 Tbits of data
organized as one file of 1 Tbits, two files of 500 Gbits, one
file of 80 Gbits, and two files of 64 Gbits. We also tested
300 sequences of lengths 1 Mbits, 0.2 Gbits, 0.5 Gbits,
1.0 Gbits for k ¼ 1, 2, 3, and 4, respectively, and compared
the failure rates to what is expected for an ideal random
source.
In conclusion, we have demonstrated a spontaneous-

emission-driven random number generator suitable for
closing the locality and freedom-of-choice loopholes in a
test that also closes the detection loophole. By combining
high-speed phase-diffusion RNG, real-time randomness
extraction, and metrological guarantees, we have produced
extracted bits traceable to spontaneous-emission events less
than 36 ns old and with excess predictability ϵ ≤ 10−5.
Generation of high-quality random bits in narrow time
windows enables definitive tests of quantum nonlocality
and “device-independent” technologies guaranteed by the
no-signaling principle.
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