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We describe experiments and simulations demonstrating the propulsion of a neutrally buoyant swimmer
that consists of a pair of spheres attached by a spring, immersed in a vibrating fluid. The vibration of the
fluid induces relative motion of the spheres which, for sufficiently large amplitudes, can lead to motion of
the center of mass of the two spheres. We find that the swimming speed obtained from both experiment and
simulation agree and collapse onto a single curve if plotted as a function of the streaming Reynolds number,
suggesting that the propulsion is related to streaming flows. There appears to be a critical onset value of
the streaming Reynolds number for swimming to occur. We observe a change in the streaming flows as
the Reynolds number increases, from that generated by two independent oscillating spheres to a collective
flow pattern around the swimmer as a whole. The mechanism for swimming is traced to a strengthening
of a jet of fluid in the wake of the swimmer.
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The mechanism by which self-propulsion through a fluid
is achieved has fascinated scientists of many disciplines,
and the public alike, for aesthetic, practical, and funda-
mental scientific reasons [1–5]. In biology and biomechan-
ics the mechanisms behind the way organisms swim gives
insight into their biological function and purpose [1,2,6,7].
Recently, the design of efficient “robots” able to navigate
themselves through various fluids has become an important
technological and medical challenge that brings together
elements of physics, chemistry, biology, engineering, and
fluid mechanics [8–10]. Microscopic artificial swimmers
have been proposed for use in targeted drug delivery; see,
for example, [11–13].
Purcell’s scallop theorem states that at zero Reynolds

number an object cannot swim using a time-reversible
stroke: it will end up going back and forth with no net
displacement [3]. Many types of small creatures, for
example, insects and aquatic invertebrates, swim at inter-
mediate Reynolds numbers (1-100) [14]. In these cases,
time-reversal symmetry is broken by nonlinearities in the
fluid dynamics rather than by the nature of the stroke. For
such swimmers, an interesting question arises: how does
the motion evolve as the Reynolds number is increased
from zero? It has been argued that symmetrical objects with
symmetrical strokes such as flapping wings have an onset
for motion at a critical Reynolds number [15–18], whereas
asymmetrical objects or strokes have a continuous tran-
sition as the Reynolds number is increased [19].
A central problem when designing a practical artificial

swimmer is how to get energy into the system. Methods
based on electromagnetic or chemical actuation have been
developed [13] and currently there is interest in using
acoustic techniques to generate propulsion through the

oscillation of entrapped air bubbles [20,21]. Vladimirov
proposed an alternative mechanism that may lead to
swimming based on a deformable object which is neutrally
buoyant, but composed of coupled spheres with different
sizes and densities [22]. Such an object can generate
relative motion of its parts if immersed in a vibrating fluid;
this motion may lead to swimming. However, his calcu-
lations in the absence of fluid and particle inertia predicted
that such an object will not swim if subjected to unidirec-
tional oscillation. Here we pose the question: can an
experimental realization of this object be made to swim
at higher Reynolds numbers, and, if so, what is the method
of propulsion and the nature of the transition to swimming?
In this Letter we describe experiments and simulations

demonstrating the propulsion of a pair of spheres attached
by a spring, immersed in a vertically vibrating fluid. We
consider two particular realizations of this object: one with
unequal-sized spheres and the other with equal-sized
spheres. In both cases, the density of the spheres is different
from one another and from the liquid in which they are
immersed; however, the object as a whole is neutrally
buoyant. We find that both designs swim for sufficiently
high amplitudes of vibration; the unequal-sized spheres
swim upwards, in the direction of the larger, less dense
sphere, whereas the equal-sized spheres swim downwards,
in the direction of the higher density sphere. The data for
the swimming speed are found to collapse both in experi-
ment and simulation when scaled appropriately with the
streaming Reynolds number, suggesting that the streaming
flows induced by fluid nonlinearities play a central role
[23]. Furthermore, the apparent onset of motion appears to
be governed by a critical value of the streaming Reynolds
number. The mechanism for propulsion is traced to a
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change in the topology of the streaming flows that
transition from those of two noninteracting spheres when
the dimer is stationary, to a collective flow around the
object, at the apparent onset of swimming. The flow field
shows a strengthening of a jet of fluid behind the swimmer.
The dimers were constructed from two spheres joined

together by a small coil of wire. Examples of the asym-
metric and symmetric dimers are shown in the insets to
Figs. 1 and 2, respectively. Details of their construction and
the experimental setup are given in the Supplemental
Material [24]. The dimers were designed so that they
could be made neutrally buoyant in a salt-water solution.
The solution was vibrated vertically at a given frequency, f,
amplitude, A. The dimensionless acceleration of the cell
Γ ¼ Að2πfÞ2=g was varied between 1 and 20, where g is
the gravitational acceleration. The frequency ranged from
30 to 135 Hz.
As the cell vibrated, each sphere had a different

amplitude and phase relative to the fluid motion due to
differences in the size and/or densities of the two spheres.
At low amplitudes of vibration of the cell the spheres
oscillated vertically, but no net time-averaged motion of the
center of mass of the spheres could be observed within
experimental error. Beyond a certain threshold the dimer
started to move; increasing the amplitude made the dimer
swim faster.

To obtain the velocity of the dimer, the vibration was
initiated abruptly under fixed Γ and f, and the motion of the
dimer was filmed using a high-speed camera. The movies
show that the separation of the spheres varied sinusoidally
(indicating that the coiled wire acted as a linear spring to a
good approximation). From such movies the steady-state
velocity of the dimer, v, and the relative amplitude of the
two spheres with respect to each other, Ar, were obtained.
Ar is the amplitude of the relative motion of the two spheres
that comprise the swimmer. Note that Ar and the driving
amplitude of the cell are different; Ar increases approx-
imately linearly with A. As far as the motion of the spheres
is concerned, in the rest frame of the cell, Ar and f are the
only relevant driving parameters. As can be seen from the
movies [24], the motion of the spheres was predominantly
along the vertical line through their centers; there was very
little sideways “waggling” movement.
Figure 1 shows the data obtained for the two asymmetric

dimers, which swim upwards in the direction of the larger
sphere. The data collapse (within the scatter) when plotted
in terms of the dimensionless combinations v=fL, and
the streaming Reynolds number Res ¼ A2

r=δ2. Here L is the
diameter of the larger sphere and δ ¼ ðν=2πfÞ1=2 is the
viscous length in terms of the kinematic viscosity ν. Res is
one of three dimensionless ratios that can be defined from
the length scales Ar, L, and δ and characterizes the time-
averaged (steady) flow [23,29]. In our experiments L ≫ δ
which results in a configuration of the time-averaged flow
around each sphere that has inner and outer loops [23,30].
The data are consistent between the measurements obtained
from two nominally identical, asymmetric dimers, indicat-
ing that small differences in construction such as variations
in the shape of the loop of wire and of the shape and amount
of glue have little effect. The collapse in terms of Res shows

FIG. 1 (color online). Main panel shows the experimental data
collapse for the unequal-sized swimmer that swims upwards.
The driving conditions are the following: blue stars f ¼ 65 Hz,
light blue triangle down f ¼ 75 Hz, pink hexagons f ¼ 85 Hz,
cyan circles f ¼ 95 Hz, yellow triangle up f ¼ 105 Hz,
green triangles right f ¼ 125 Hz, green diamond f ¼ 135 Hz.
In all cases the viscosity was 1.2 mm2=s except for one data
set (turquoise diamond f ¼ 135 Hz) where the viscosity was
2.5 mm2=s. Simulations for Γ between 2 and 20 and frequencies
f ¼ 65, 75, 100, 125 Hz are shown by the red plus symbols for
comparison. The lower inset shows a close-up of the experimental
data (f ¼ 125 Hz) shown in the main panel near the apparent
onset. The upper inset shows a photograph of the swimmer
when stationary.

FIG. 2 (color online). Main panel shows the experimental data
collapse for the equal-sized swimmer. The driving conditions are
the following: blue stars f ¼ 30 Hz and green triangles right
f ¼ 35 Hz. Simulations for Γ between 2 and 12 and frequency
f ¼ 30 Hz are shown by the red plus symbols for comparison.
The inset shows a photograph of the swimmer when stationary.
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that the motion is related to streaming flows generated by
the vibration of the dimer. The lower inset shows data
taken at low amplitudes of vibration and suggests a sharp
increase in velocity at Res ≈ 20.
Figure 2 shows the behavior of the equal-sized dimer.

In this case it moves in the opposite direction, downwards,
with the heavier sphere at the front. The data illustrate that
the speed and direction of motion depends on the densities
and sizes of the spheres, as well as the gap between them; if
the two spheres are sufficiently far apart, the dimer will not
swim. The main reason for considering this system is that it
is arguably one of the simplest objects that can be made to
swim. Note that it was difficult to design dimers made of
equal-sized spheres of different densities that can be made
neutrally buoyant in salt solutions, and have sufficient
mass difference between the spheres to generate enough
relative motion to induce swimming. Hence the relative
paucity of data compared to that obtained for the unequal-
sized dimers.
We now ask the question: what is the cause of the

motion? To address this we first imaged the flow using
tracer particles illuminated by a planar laser sheet in the
plane containing the centers of the two spheres of the dimer.
Figure 3(a) shows a photograph of the asymmetric dimer
taken with an exposure time of one period of oscillation,
revealing the motion of the tracer particles. In this image
the dimer is close to the onset of motion. A downward jet
originates from the vicinity of the lower sphere [24].
Similar behavior was found for equal-sized spheres, except
that the strong jet was generated by the upper, lighter
sphere, causing the swimmer to swim downwards.
In order to investigate the motion of the spheres and the

fluid in detail we used simulations which were based on an
embedded boundary method described previously [30–34].
The fluid was assumed to obey the Navier-Stokes equations
which were discretized on a staggered mesh [35] and
solved using the projection method [36] to ensure incom-
pressibility of the fluid. The interaction between the fluid
and the rigid spheres was achieved through the template
model, which introduces a two-way coupling between the
particles and the fluid [33]. The spheres were joined by a
linear spring as in the experiments. An equal and opposite
force was applied vertically to the spheres to mimic the
effects of static buoyancy, rather than imposing the effect
of gravity directly on the fluid. The influence of vibration
was introduced by applying a sinusoidal acceleration to
the fluid and particles, so that the simulations were carried
out in the frame of reference of the vibrated cell.
The computational parameters of the swimmer (size,

density, and gap) and fluid (viscosity and density) were
chosen to match the experiments. However, any interaction
of the wire with the fluid was ignored and the dimers were
assumed to be made of perfect spheres. Details of the
parameters used are given in the Supplemental Material
[24]. One difference between experiment and simulation is

that the simulated cells are smaller due to computational
limitations. Examples of the simulated data are shown in
Figs. 1 and 2 by the large red plus symbols. There is clearly
good agreement between the simulations and experiment
despite the numerical limitations arising from the simulated
cell size and possible fluid lattice effects.

FIG. 3 (color online). Illustrations of the fluid flows generated
by the vibration of the spheres from experiment and simulation.
Panel (a) shows an image taken from experiment showing the
flow around the spheres. The arrow illustrates the direction of a
jet of fluid evident from the movies (Supplemental Material [24]).
Panels (b) and (c) show the direction of the time-averaged
velocity field (i.e. the normalized velocity vectors) in the
plane of the spheres. In (b) the swimmer is stationary (Res ¼ 15)
while in (c) it is swimming (Res ¼ 60). These figures illustrate the
change in topology of the flows as the amplitude of vibration
increases. Note that the magnitude of the flows is much greater
around the smaller sphere than around the larger sphere, as
seen in (a).
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The simulations allow us to determine in more detail the
fluid flows generated by the motion of the spheres induced
by the vibration of the cell. This flow is best illustrated by
plotting the direction of the velocity field in the vertical
plane through the center of the two spheres. Examples of
these flows for the two unequal-sized spheres, time-
averaged over a cycle, are shown in Figs. 3(b) and 3(c).
At low amplitudes, Fig. 3(b), there are two outer vortex
rings around each sphere, marked by crosses. This is the
flow pattern expected if the flows of the two spheres do
not interact strongly [29]. Under these conditions the time-
averaged center of mass of the two spheres remains
stationary: the dimer does not swim.
As the amplitude increases, the flows grow in strength,

but more importantly, the flows around each sphere start
to interact strongly. The lower loop of the upper sphere
is forced towards the surface of the sphere and reduces in
size. Eventually, for sufficiently high amplitudes, there
are only three vortex loops, as shown in Fig. 3(c). A jet of
fluid directed downwards from the smaller sphere can be
observed from the plot of the normalized velocity field,
Fig. 3(c), and from experiment, Fig. 3(a). Under these
conditions, the swimmer moves upwards, in the opposite
direction to the jet.
Simulations also allow us to vary parameters which are

not easily accessible experimentally, such as a wider range
of fluid viscosities, as shown in Fig. 4. When the dimer is
moving there are four independent length scales: v=f, Ar, L
and the viscous length δ. We obtain the best data collapse if
v=f is made nondimensional by dividing by L rather than
either of the other two length scales (see Supplemental

Material [24]). Figure 4 shows the simulation data plotted
in this way indicating data collapse, the same way as the
experimental data collapse shown in Fig. 1. The lower right
inset to Fig. 4 shows typical trajectories after vibration has
been applied. There are a few seconds of transient motion
before the steady-state velocity is reached.
Figures 1, 2, and 4 all show that v=fL scales approx-

imately linearly with the streaming Reynolds number Res for
sufficiently large amplitudes Ar. This behavior is different
from that observed for magnetic granular snakes [37] and
rigid dimers on surfaces [31]. A simple argument can be
constructed to explain the scaling behavior. Taking the
unequal-sized swimmer as an example, the smaller sphere
has a much larger amplitude of motion than the larger sphere
(see movie in the Supplemental Material [24]). The smaller
sphere acts as a pump, imparting downward momentum to
the fluid. The reaction force on the small sphere is equal and
opposite to the rate of momentum transfer to the fluid. Its
magnitude is proportional to the square of its speed ðfArÞ2,
the fluid density, ρ, and a geometric factor proportional to
L2. In this simple model, the force is balanced by Stokes’s
drag on the larger sphere which scales as 6πLηv with v the
velocity of the swimmer and η is the dynamic viscosity of the
fluid (ρν). By equating the two forces we obtain v=fL
proportional to Res ¼ A2

r=δ2 as observed in the data for large
amplitudes.
Note, however, that this particular scaling behavior is not

expected to hold generally as there are four independent
length scales in this problem, and therefore three indepen-
dent dimensionless ratios of lengths. The argument pre-
sented above is only expected to hold in the limit L ≫ δ.
The analysis given above assumes a strong asymmetry of

the flows around both spheres, an assumption that breaks
down at lower Reynolds numbers, as shown from the flow
patterns in Fig. 3. In both experiment and simulation there
appears to be a critical onset value of Res ≈ 20 for
swimming to occur, obtained by extrapolation of the data
to v ¼ 0. It has been argued that asymmetric objects have
a continuous transition to swimming [19]. This is not
necessarily inconsistent with our observations. For Res
below the apparent onset it is difficult to determine whether
v is strictly zero or is just small: experimentally it is difficult
to ensure that any small center-of-mass motion is not due
to residual buoyancy; in simulation, lattice effects may
influence the motion when the amplitudes of the spheres
become comparable to the lattice spacing. The existence of
an apparent onset to motion has also been observed in an
asymmetric flapping wing [17] and the “acoustic scallop”
[20]. The good agreement between the experiment and
simulation for our system allows us to conjecture that
the apparent onset of motion arises from the change in
topology of the streaming flows.
The examples presented here show a rich variety of

behavior but only represent a small part of the parameter
space. A systematic investigation into the influence of the

FIG. 4 (color online). Data collapse from simulations
confirming the scaling behaviour for different viscosities (red
1.2 × 10−6 m2=s, blue 2 × 10−6 m2=s, green 3 × 10−6 m2=s).
Each data set includes simulations for Γ between 2–20 and
f ¼ 65, 75, 100, 125 Hz. The lower inset shows typical trajec-
tories of a swimmer that stays stationary for Γ ¼ 2, f ¼ 65 Hz
(red line) and one that swims for Γ ¼ 12, f ¼ 75 Hz (blue line).
The upper left inset is a snapshot from simulations showing the
swimmer and the simulated cell.
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overall size of the dimer, the ratio of the sphere diameters,
the sphere density ratios, and the gap width would be
informative. It would be of interest to make a fully self-
propelled swimmer based on the relative vibration of two
spheres, driven by an internal linear motor, since such
swimmers would not be constrained to move along one
axis. Collections of such swimmers might be expected to
exhibit interesting cooperative behavior induced by inter-
acting streaming flows [30,32,33,38,39].
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