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Motivated by the general problem of moving topological defects in an otherwise ordered state and
specifically, by the anomalous dynamics observed in vortex-antivortex annihilation and coarsening
experiments in freely suspended smectic-C films, I study the deformation, energetics, and dynamics of
moving vortices in an overdamped XY model and show that their properties are significantly and
qualitatively modified by the motion.
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Introduction.—Topological defects play a central role in
phase transitions, relaxation of generalized strain (e.g.,
current dissipation in a superfluid, strain relaxation in a
crystalline solid, etc.) [1], and coarsening dynamics after a
quench into an ordered state [2]. They appear in a broad
range of physical realizations from superfluids and liquid
crystals [3] to early universe baryogenesis [4].
Many physical systems involve topological defects

moving (stochastically or deterministically) through an
otherwise ordered medium. Although it is usually tacitly
assumed that defect’s properties (texture structure, inter-
action, dynamics, etc.) are not modified by its motion, with
the center r0 simply boosted r0 → r0ðtÞ by the motion,
there is no a priori reason for this to be the case. Instead,
not unlike a relativistic charged particle, a moving defect is
defined and governed by the dynamics of the associated
vector field, requiring a nontrivial analysis that is the
subject of this Letter.
Stimulated by this general question, and by the anoma-

lous vortex-antivortex annihilation and coarsening dynam-
ics [2] observed in freely suspended smectic-C films
experiments [5–7], I explored the nature of moving vortices
in an overdamped two-dimensional (2D) XY model,
applicable to a broad range of soft matter systems. In this
Letter, I report the results of these studies. With some
modifications these may also extend to vortices in a
nonzero-temperature superfluid and superconductor in
the presence of a background supercurrent or dislocations
in a strained crystal.
Results.—Before turning to the analysis, I summarize the

results of this study. I find that a vortex imposed to move
with a constant velocity v in an ordered medium of stiffness
K and damping γ, beyond a length scale

ξv ¼
K
γv

≡D=v≡ k−1v ð1Þ

exhibits a nontrivial longitudinal distortion of its standard,
purely transverse form [3], the latter retained on the length
scale below ξv. In the steady state the resulting deformed

vortex exhibits a parabolic cometlike tail, extending across
the system to which most of the 2π phase winding is
confined (see Figs. 1 and 2). While a motion-induced
distortion is not surprising, its long-range nature and
qualitative consequences (see below) indeed are. For a
transient state at time t after a vortex begins to move, the
steady-state distortion only extends out to a time-dependent
anisotropic “horizon” vt ×

ffiffiffiffiffiffiffiffiffiffi
Kt=γ

p
, beyond which the

purely transverse vortex field is nearly undistorted by
the motion. This is analogous to the Lienard-Wiechert
potential of a moving point charge [8]. All other predictions
follow from this result. Specifically, a �2π vortex steady-
state mobility

μv ≈
1

πγ lnð2ξv=aÞ
∼ 1=j ln vj ð2Þ

vanishes logarithmically with vanishing velocity ξv cutting
off the lnL=a divergence of a stationary vortex drag
coefficient, a result that was previously found via scaling
and numerical analysis in earlier studies [1,2,9,10] (a is the
vortex core size). Thus, a 2D vortex exhibits a breakdown
of a linear response to an external force f, with truly
nonlinear velocity-force characteristics vðfÞ ∼ f=j ln fj.

FIG. 1. A vector field corresponding to a phase θðrÞ for a
vortex-antivortex pair comoving to the right with velocity v.
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The “comet-tail” texture of a moving�2π vortex leads to
an elastic energy that diverges linearly with system size

Ev ≈ πKðL=ξv þ ln ξv=aÞ; ð3Þ

with the usual logarithm cut off by the length ξv ∼ 1=v that
diverges with a vanishing velocity. The interaction between
two �2π moving vortices strongly depends on their
velocities and orientation relative to the separation vector,
r. With the eye on the problems of a vortex-antivortex
annihilation and nucleation by an imposed strain, I find the
interaction potential U∥

v;−vðrÞ for a vortex and antivortex
moving toward each other v∥r (Fig. 2)

U∥
v;−vðrÞ ¼ 2πK½c − sinh−1ðξv=rÞ�;

≈ 2πK

�
c − ξv=r; a ≪ ξv ≪ r;

ln r=a; a ≪ r ≪ ξv;
ð4Þ

and a potential U⊥
v;vðrÞ for a pair comoving with velocity

v⊥r (Fig. 1)

U⊥
v;vðrÞ ¼ 2πK

h
c − sinh−1ðξv=rÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=ξ2v þ 1

q i
;

≈ 2πK

�
cþ r=ξv; a ≪ ξv ≪ r;

ln r=a; a ≪ r ≪ ξv;
ð5Þ

with c ¼ ln ξv=a. Thus, in the annihilation configuration
(Fig. 2), vortex attraction for separation beyond ξv is
suppressed by the motion. Conversely and even more
dramatically, I predict that vortex-pair motion in the
transverse configuration (Fig. 1) leads to a linear confine-
ment on long length and time scales.
The above velocity-dependent vortex mobility and inter-

action qualitatively modify the equation of motion for the
vortex-antivortex separation. This leads to a late-time
slowed annihilation dynamics that may be an important
ingredient in the anomalies observed in the experiments [6].
Analysis.—With the above motivation in mind, I now

turn to the analysis of moving �2π vortices in a 2D

overdamped XY model (in the isotropic approximation the
generalization to higher vortex charge is straightforward)

γ∂tθ ¼ K∇2θ; with ∇ × ∇θ ¼ 2πδ(r − rvðtÞ)ẑ; ð6Þ
searching for a vortex solution θðr; tÞ that for simplicity I
take to be moving at constant velocity defined by
rvðtÞ ¼ vt. Despite ignoring a number of ingredients
[11], I expect it to be a core description of many systems
where damping is dominant.
To this end, I take the solution to be θðr; tÞ ¼

θvðr − vtÞ þ θsðr; tÞ, where θvðrÞ ¼ φ ¼ arctanðy=xÞ is
the azimuthal polar angle that is the standard purely
transverse solution of the static problem (γ ¼ 0) that
enforces a moving unit of vorticity. The θsðr; tÞ part is a
nonsingular, single-valued function (with a purely longi-
tudinal, curl-free gradient) determined by the requirement
that θðr; tÞ satisfies the equation of motion (6). Thus,
θsðr; tÞ describes the distortion of a moving vortex about
the stationary form θðrÞ ¼ φ, with its spatial Fourier
transform satisfying

γ∂tθsðkÞ þ Kk2θsðkÞ ¼ γv · ∇θvðkÞe−ik·vt: ð7Þ
The exact solution is easily found either directly for θsðr; tÞ
or by first Galilean transforming to the moving vortex
frame r0 ¼ r − vt, ∂t → ∂t þ v · ∇r0 , where the distortion
is θs0ðr0; tÞ≡ θsðr0 þ vt; tÞ.
For a vortex that has been moving forever, the Fourier

transform of the steady-state distortion (vanishing for
v ¼ 0) is given by

θs
0ðkÞ ¼ γv · ∇θvðkÞ

Kk2 − iγv · k
¼ −2πikv · ẑ × k

k2ðk2 − ikv · kÞ
; ð8Þ

where kv ≡ γv=K. This leads to the “elastic” energy
spectrum, j∇θðkÞj2¼ 4π2ðk2þk2vÞ=½ðkv ·kÞ2þk4�, which,
on length scales beyond ξv (k ≪ kv), is highly anisotropic,
akin to that of a smectic liquid crystal. On shorter length
scales it reduces to that of an isotropic stationary (undis-
torted) vortex [3].
In real space the steady-state distortion for a 2π vortex

moving along the x axis in the vortex frame is given by

θ0sðrÞ ≈ −
Z

∞

0

dq
q
e−qjx̂j sin qŷ

qþ 1

− 2Θð−x̂Þ
Z

∞

0

dq
q
e−qjx̂j sin qŷ

q2 − 1
½1 − e−qðq−1Þjx̂j�;

ð9Þ
where x̂ ¼ x=ξv, ŷ ¼ y=ξv, and ΘðxÞ is the Heaviside step
function. Evaluating above integrals numerically and add-
ing the singular part of the vortex, θvðrÞ ¼ φ, gives the real-
space vector fields illustrated in Figs. 1 and 2.
A transient-state field of a vortex that has been moving

for time t (particularly relevant for the annihilation prob-
lem) can also be computed exactly and is given by

FIG. 2. A vortex-antivortex counterpropagating pair relevant to
the annihilation problem. The motion-induced cometlike tails
(that lead to a linearly diverging vortex elastic energy) and a
suppression of the deformation between vortices (that leads to a
weakened interaction) are clearly visible.
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θ0sðr; tÞ ¼
Z
k
kv · ∇θvðkÞ

1 − e−
K
γ ðk2−ikv·kÞt

k2 − ikv · k
eik·r: ð10Þ

Its key generic features are controlled by three length scales
ξv, ξ⊥ ≡ ffiffiffiffiffiffiffiffiffiffi

Kt=γ
p

, and ξ∥ ¼ vt. At time t > t� ≡ ξv=v, such
that ξv ≪ ξ⊥ ≪ ξ∥, one can see from the solution, Eq. (10),
that on scales shorter than an anisotropic domain ξ∥ × ξ⊥,
the solution reduces to the comet-tail steady-state one,
Eq. (9) (Figs. 1 and 2). On longer scales the vortex dis-
tortion reduces to θ0sðr; tÞ ≈ vt · ∇θvðr0Þ, which when com-
bined with the singular part gives

θ0ðr0; tÞ ≈ θvðr0Þ þ vt · ∇θvðr0Þ ≈ θvðr0 þ v0tÞ ¼ φ: ð11Þ
Thus, on scales outside of the vt ×

ffiffiffiffiffiffiffiffiffiffi
Kt=γ

p
domain the

vortex field reduces to that of an undistorted stationary
vortex θðr; tÞ ¼ φ at its initial, t ¼ 0 position (see Fig. 3).
This is a diffusive vortex analog of a “causal horizon”
beyond which the distortion associated with a moving
vortex had not had sufficient time to propagate out. Other
results (e.g., a vanishing vortex mobility, vortex energy, and
interaction between moving vortices) follow directly from
the above moving vortex solution.
Vortex mobility.—In the steady state the power input by

the external force F to drive the vortex at velocity v is
balanced by the rotational power dissipated; Prot ¼R
rð∂tθÞðK∇2θÞ ¼ R

r γð∂tθÞ2 ¼ γv2
R
rð∂xθÞ2 gives the vor-

tex drag coefficient γv ≡ μ−1 (inverse mobility) [1,9,10]

γv ¼ γ

Z
a−1

0

dkk
Z

2π

0

dθ
sin2θ

k2vcos2θ þ k2
;

¼ πγsinh−1
�

1

kva

�
≈ πγ lnð2ξv=aÞ ∼ γ ln v: ð12Þ

Thus, at finite velocity, a previously noted divergence with
system size L or vortex separation r [2,5,7] is cut off by the
velocity length ξv ∼ 1=v, thereby displaying nonlinear
velocity-force characteristics, i.e., an absence of linear
response down to a vanishing force.
Vortex energy.—It is of interest to calculate the elastic

energy Ev ¼ ðK=2Þ R d2rj∇θj2 stored in a moving vortex.
In steady state, using Eq. (8) I find

Ev ¼ πK
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL=ξvÞ2 þ 1

q
þ lnðξv=aÞ − sinh−1ðξv=LÞ

i
;

which, for vanishing velocity L ≪ ξv reduces to lnL=a of a
stationary vortex, but for a rapidly moving vortex L ≫ ξv
gives the energy, Eq. (3), that diverges linearly with L and
with the standard logarithm cut off by the velocity length,
ξv. This later result is due to the confinement of the elastic
distortion (that in a stationary vortex is uniformly azimu-
thally distributed) to a comet-tail wake of a moving vortex.
Vortex interaction.—To further characterize the nature of

moving vortices I study vortex-antivortex interaction,
which strongly depends on their velocities and orientation
relative to the initial separation vector, r∥ ¼ rþ − r−.
Motivated by the vortex-pair annihilation dynamics, I

first compute the energy Ev;−vðr∥Þ ¼ ðK=2Þ R d2rj∇θv;−vj2
of a vortex-antivortex pair moving toward each other
with velocity �v ¼ �vr̂ along the separation vector,
r∥. In steady state the solution is given by θv;−vðr; tÞ ¼
θþs ðr − rþ − vtÞ þ θþv ðr − rþ − vtÞ þ θ−s ðr − r− þ vtÞþ
θ−v ðr − r− þ vtÞ, with singular (v) and smooth (s)
components for vortex (at rþ) and antivortex (at r−),
respectively. The corresponding elastic energy Ev;−vðr∥Þ¼
K
R
d2k
k2 ½1−eik·r∥ðtÞþðk2k2v−ðkv ·kÞ2Þð 1

k4þðkv·kÞ2þ
eik·r∥ðtÞ

ðk2−ikv·kÞ2Þ�,
is given by

Ev;−vðr∥Þ≈ 2πK

�
L
ξv

þ ln
ξv
a
− sinh−1

ξv
r∥

�

≈ 2πK

�
L=ξvþ lnðξv=aÞ− ξv=r∥; a≪ ξv ≪ r∥;

L=ξvþ lnðr∥=aÞ; a≪ r∥ ≪ ξv;

ð13Þ

where r∥ðtÞ ¼ rþ − r− − 2vt and above I evaluated the
asymptotic r∥ dependence using an approximate hard
cutoff ξv=r∥ on low k. Even for coinciding vortex-
antivortex positions a linear in system size contribution
L=ξv remains due to elastic energy associated with the
comet tail of each moving vortex (see Fig. 2). Subtracting
this constant self-energy piece I obtain the vortex-
antivortex interactionU∥

v;−vðr∥Þ advertised in Eq. (4), which
is qualitatively weaker and of a shorter range, falling off as
1=r∥ at large separations, r∥ ≫ ξv.
Before moving on, I stress that a full vortex annihilation

problem is far richer, requiring the analysis of a full
transient dynamics as vortices accelerate from rest, with
their velocity length ξvðtÞ evolving nontrivially and tails
limited by the causal horizon, growing with t from below to
beyond their separation, r∥ðtÞ. Consequently, the nature of
the interaction U∥

v;−vðr∥; ξvÞ is nontrivially velocity depen-
dent. I analyze the associated dynamics of rðtÞ below.
Another geometry of interest is a comoving vortex-

antivortex pair (see Fig. 1), with the velocity v
perpendicular to the separation vector, r⊥ ¼ rþ − r−.

FIG. 3. A transient vector field of a vortex moving for time t,
exhibiting a steady-state distortion out to an elliptical “horizon”
vt ×

ffiffiffiffiffiffiffiffiffiffi
Kt=γ

p
and purely transverse vortex field beyond.
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In the steady state, the solution θv;vðr; tÞ ¼ θþs ðr− rþ −
vtÞ þ θþv ðr− rþ − vtÞ þ θ−s ðr− r− − vtÞ þ θ−v ðr− r− − vtÞ
leads to the elastic energy Ev;vðr⊥Þ ¼ K

2

R
d2rj∇θv;vj2 ¼

K
R
d2k k2þk2v

k4þðkv·kÞ2 ð1 − eik·r⊥Þ given by

Ev;vðr⊥Þ ≈ 2πK
h
lnðξv=aÞ − sinh−1ðξv=r⊥Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊥=ξ2v þ 1

q i

≈ 2πK

�
r⊥=ξv þ lnðξv=aÞ; a ≪ ξv ≪ r⊥;
lnðr⊥=aÞ; a ≪ r⊥ ≪ ξv;

ð14Þ
evaluated in the same hard cutoff approximation as in
Eq. (13), and givingU⊥

v;vðr⊥Þ advertised in Eq. (5). This is a
striking result as it predicts for r⊥ > ξv a linear confine-
ment of a moving vortex-antivortex pair, replacing loga-
rithmic potential for a stationary pair. As is clear from
Fig. 1 this elastic energy is associated with the r⊥ length of
the nonoverlapping parts of the “comet” tails, and the rest,
beyond the r⊥ parts, canceling between the comoving
vortex and antivortex.
Vortex-antivortex annihilation dynamics, approximately

described [neglecting [11] transients in Eq. (10)] by
γvdr=dt¼−∂U−v;vðr;vÞ=∂r¼−ð2πK=rÞð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=ξ2vþ1

p
Þ,

_̂r lnðj _̂rj=2Þ ¼ − 1

r̂
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂2 _̂r2 þ 1

q ð15Þ

is significantly enriched [11] by the velocity-dependent
mobility, Eq. (2) and interaction, Eq. (4), as compared to
the naive dynamics γdr=dt ¼ −K=r that predicts a vortex

separation rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − ð2K=γÞt

p
, initially separated by

r0, annihilating in time t0 ¼ r20γ=ð2KÞ [6]. Above r̂ and t̂
are, respectively, measured in the microscopic units of a
and ta ¼ a2γ=ð2KÞ. Equation (15) predicts in units of va ¼
a=t0 that r̂ v̂ ¼ ð1= ffiffiffi

2
p Þ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=ln2ðv̂=2Þ

p
− 1�1=2 (rather

than r̂ v̂ ¼ const of the naive dynamics) and can be solved
numerically, with the result illustrated in Fig. 4. It shows a

significant modification and slowing of the dynamics by
the effects studied here.
Beyond the transient time ξv=v, the enriched dynamics is

expected only in the regime of large separation and high
velocity rv ≫ ava ¼ K=γ, corresponding to r ≫ ξv. Using
K=γ ≈ 10−5 cm2= sec and v ¼ 1 μm= sec, I estimate ξv ≈
1 mm and va ≈ 1 mm= sec for a ≈ 1 μm, a limited regime
of the current experiment’s [6] applicability. Also, above
prediction for the product rv decreasing with r is incon-
sistent with measurements [6]. Thus, I conclude that in
current vortex annihilation experiments, the high velocity
effects studied here are not sufficient to account for the
observed anomalies [6] and other effects [11] may need to
be considered. Further systematic experiments on moving
vortices would be highly desirable to sort out various
contributions.
I also leave the extension of the present London limit

analysis to a superfluid, beyond a linearized XY model
treatment [13], incorporating the full Galilean invariance
[14] for a future study.
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