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We expand the well-known notion that quantum criticality can induce superconductivity by proposing a
concrete mechanism for superconductivity due to quantum ferroelectric fluctuations. To this end, we
investigate the origin of superconductivity in doped SrTiO3 using a combination of density functional and
strong coupling theories within the framework of quantum criticality. Our density functional calculations of
the ferroelectric soft mode frequency as a function of doping reveal a crossover related to quantum
paraelectricity at a doping level coincident with the experimentally observed top of the superconducting
dome. Thus, we suggest a model in which the soft mode fluctuations provide the pairing interaction for
superconductivity carriers. Within our model, the low doping limit of the superconducting dome is
explained by the emergence of the Fermi surface, and the high doping limit by departure from the quantum
critical regime. We predict that the highest critical temperature will increase and shift to lower carrier
doping with increasing 18O isotope substitution, a scenario that is experimentally verifiable. Our model is
applicable to other quantum paraelectrics, such as KTaO3.
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Strontium titanate (STO) is a cubic perovskite with the
ideal prototype structure at room temperature and a
tetragonal structure below ∼100 K due to symmetry-
lowering antiferrodistortive (AFD) rotations of the TiO6

octahedra [1]. It is characterized by a number of remarkable
properties. It was the first superconducting oxide to be
discovered [2] and shows a dome as a function of doping,
similar to that of the high-Tc cuprates [3], but with its
maximum transition temperature at Tc ≃ 0.4 K. Early
tunneling measurements [4] and subsequent experiments
[5] suggested an unusual two-band superconductivity,
consistent with the closely spaced lowest conduction bands
at the center of the Brillouin zone. In addition, the onset of
superconductivity has been shown to occur at remarkably
low carrier concentrations of 1018e=cm3 [5]. Despite a
long-running interest in its origin [3], a complete theoretical
account of the superconducting dome remains elusive, and
many aspects of superconductivity in STO remain a puzzle.
The dielectric behavior of STO is also unusual. The

dielectric constant is strongly temperature dependent, and
diverges at low temperature in a manner characteristic of a
ferroelectric phase transition [6]. In fully oxidized samples
the square of the polar TO mode frequency decreases
linearly with decreasing temperature and when extrapolated
should become imaginary at finite temperature, indicative
of a ferroelectric instability [7] at low temperature. Rather
than manifesting ferroelectric behavior, however, STO is a
so-called quantum paraelectric, in which quantum fluctua-
tions at zero temperature suppress the transition to the
ferroelectric state [6] as is also manifested by a leveling off

of the TO mode at a real frequency at low temperature [7].
The quantum paraelectric state is characterized by low
energy excitations and large ferroelectric fluctuations [8],
and it has been speculated that these might be relevant
for the superconductivity [9,10]. Indeed, early descriptions
[3,11] of the superconducting dome in STO were based on
the effects of screening of the interaction between electrons
and the optical phonons responsible for the large dielectric
response. Because heavier 18O atoms suppress the quantum
fluctuations, STO develops ferroelectric order on isotope
substitution of 16O with 18O [12–14], and the composition
with 35% 18O substitution was recently reported to be a
ferroelectric quantum critical point (QCP) [15].
We present a model in which these two features—

proximity to the ferroelectric QCP and the unusual super-
conducting properties—are intimately related, and the
superconducting dome emerges as a result of the quantum
critical ferroelectric fluctuations. A connection between the
formation of a superconducting dome and quantum criti-
cality has been extensively discussed in the context of
unconventional superconductivity, both in heavy fermion
materials and in the cuprates [16–18]. It is proposed that
competing phases close to the quantum critical point lead to
low energy excitations such that any residual interactions
drive the system to a new, possibly superconducting phase.
In heavy fermion materials and the cuprates a magnetic
quantum critical point with associated spin excitations has
been invoked to explain superconductivity. In STO the
elementary excitations associated with the ferroelectric
quantum critical point are optical phonon modes. As a
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result we expect differences in the nature of the super-
conducting order: Magnetic fluctuations typically produce
unconventional superconducting order such as d-wave
singlets for antiferromagnetic fluctuations [19,20] or
p-wave triplet states for ferromagnetic fluctuations [21].
The ferroelectric fluctuations in STO, in contrast, involve
q ¼ 0 phonon modes and as such are candidates for pairing
interactions that introduce conventional s-wave supercon-
ducting order, as observed in experiments [22].
Our model is motivated by our density functional theory

(DFT) calculations of the zone-center (q ¼ 0) soft-mode
optical phonon frequency as a function of electron doping,
which shows an intriguing correlation with experimental
measurements of the superconducting dome. This ferro-
electric soft mode with opposite Sr and Ti cation and
O anion displacements (for details, see Ref. [23]) has a
calculated imaginary frequency at zero doping, indicating
the presence of a ferroelectric instability. The calculated
potential energy as a function of the relative position of
anions and cations (see Supplemental Material [24] Sec. I
for details) shows the characteristic double well form, with
the two minima corresponding to ferroelectric structural
ground states with opposite polarizations. In practice,
quantum fluctuations between the two wells suppress the
ferroelectricity in STO, and give it its quantum paraelectric
behavior. In Fig. 1 we show how, on electron doping, the
modulus of the mode frequency decreases, corresponding
to a weakening of the ferroelectric instability, and the
frequency eventually becomes real—signaling a single
high-symmetry energy minimum (inset to Fig. 1)—at a
doping concentration of ∼1020 cm−3, which is in agree-
ment with experimental data [7]. Since there is now only
one minimum of the potential well, there are clearly no
quantum fluctuations between equivalent states. At the
same doping level, the experimentally measured super-
conducting transition temperature starts to reduce [3]. Since
soft modes are characteristic of quantum criticality [34],
we propose, therefore, the following model for the super-
conducting dome in STO: First, superconductivity is
favored when the quantum fluctuations favored by the soft
anharmonic lattice modes increase the superconducting
coupling constant λ [35]. However, these are strongest at
low doping, where there are insufficient carriers to provide
robust superconductivity. Increasing the doping level has
the side effect of reducing λ, which in turn determines the
upper bound of the superconducting dome.
To test this hypothesis we propose isotopic substitution

of 16O with 18O, which lowers the energies of the zero-
point energy levels in the two minima and reduces the
probability of tunneling between them eventually favoring
a ferroelectric ground state; see Fig. 2(b). We know that
at zero carrier doping, the paraelectric to ferroelectric
transition occurs at about 35% 18O substitution and is a
quantum critical point [15]. In addition, our DFT calcu-
lations tell us that doping suppresses FE, and so the QCP

should move to higher 18O fractions as doping is increased,
implying the existence of a quantum critical line (QCL).
This allows us to construct the schematic phase diagram in
Fig. 2. Our DFT calculations give an upper bound for this
QCL, which is the doping level at which the frequency of
the FE mode becomes real and the quantum fluctuations are
completely suppressed; in practice this represents the limit
of infinitely heavy oxygen atoms and the actual critical
transition will occur at much lower doping. Note that, at
least at low 18O concentration, charge carriers only appear
as one moves away from the quantum critical point, so the
QCP is in fact located outside the superconducting dome.
This is in contrast to the emergence of superconductivity in
other systems close to a QCP, such as the cuprate super-
conductors, in which the dome is approximately centered
on the QCP. In those cases, the QCP occurs at substantial
doping, where charge carriers are already available.
We quantify our proposed model by calculating Tc,

assuming the scenario of soft critical modes in the limit of

FIG. 1 (color online). Literature values of the superconducting
critical temperature [3] (circles) and calculated frequencies (this
work) of the ferroelectric modes parallel (∥) and perpendicular (⊥)
to the axis of the AFD rotations (red solid and dashed lines) as a
function of the carrier concentration. The imaginary frequencies
obtained at low doping indicate negative restoring forces corre-
sponding to ferroelectric instabilities; as the carrier concentration
is increased the ferroelectric mode hardens and its phonon
frequency becomes real. The inset shows the calculated energy
as a function of ferroelectric mode amplitude for various doping
levels, illustrating the crossover from the classic ferroelectric
double well potential energy to a single well, indicating a para-
electric ground state on increasing doping. As the charge carrier
concentration is increased, Tc first increases and then decreases,
forming the characteristic superconducting dome. We see that the
doping concentration at which Tc drops to zero, ∼1020e=cm3,
closely matches that at which the ferroelectric mode hardens.
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low doping. We first write a quantum model for the
ferroelectric phase transition which yields a spectrum for
the FE phonons. Then, we calculate the superconducting
coupling constant, using the McMillan formula [37].
We use the order-disorder approach [38,39] to model

the ferroelectric fluctuations of the modes shown in Fig. 1.
We assume that these modes have Ising character. By
analogy with magnetic phase transitions, the transverse
Ising model

H ¼ Γ
X

i

σxðiÞ −
X

i;j

Ji;jσzðiÞσzðjÞ ð1Þ

can be used to describe the FE transition [8]. Here, σx;zðiÞ
are the Pauli matrices for site i, Γ=ℏ is the onsite tunneling
rate, Ji;j is the intersite coupling, given by the energy
difference between two cells with their dipoles aligned
parallel or antiparallel to each other, and the eigenstates of
σz represent the state of the system in one of the two wells.

The quantum phase transition occurs when Γ ∼
P

jJ0;j [8].
Our DFT study shows that doping the system will reduce
the barrier and thus increase Γ. The excitations of (1), in the
paraelectric phase Γ >

P
jJ0;j, are given by [8]

ω2
q ¼ 4ΓðΓ − hσxiJqÞ; ð2Þ

where Jq ¼ P
jJ0;je

iRjq is the Fourier transform of the
coupling and hσxi ∼ 1 is the average of σxðiÞ. In our
analysis we consider only nearest-neighbor coupling for
simplicity. Long-range interactions make the calculation
more intricate but do not yield any qualitative changes.
Furthermore, since the antiferrodistortive rotations of the
TiO6 octahedra render the lattice highly anisotropic, we
treat the system as one dimensional. Thus, we write the
coupling as Jq ¼ 2J cosðqÞ, where J is a constant and q is
the wave number in the direction of the largest coupling.
When the system is close to the phase transition it

becomes gapless as the lowest excitation softens, ωq¼0 → 0
(see Supplemental Material [24] Sec. II). This is accom-
panied a large susceptibility and an enhanced electron-
phonon coupling. To quantify this idea we calculate
the dependence of Tc on the phononic spectrum using
the formalism of Eliashberg strong-coupling theory. The
coupling constant for superconductivity is given by [37]

λ ¼
Z

∞

0

α2ðωÞFðωÞ dω
ω

; ð3Þ

where αðωÞ is the electron-phonon coupling, which we
assume to be the constant α, and FðωÞ is the spectral
density of the phonons. In the limit of a van Hove
singularity at q ¼ 0, so that FðωÞ ∼ δðω − ω0Þ, this yields

λ ¼ α2
1

ωq¼0ðf18; EFÞ
; ð4Þ

which already captures the main physical picture of
soft-mode enhanced superconductivity. The full solution
is obtained by inserting FðωÞ ¼ R

dqδðω − ωqÞ into (3)
and transforming it to an integral over q: λ ¼ R

α2ðdq=ωqÞ,
where ωq is given by Eq. (2). One then obtains

λ ∼
Z

π

−π

dq

2Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2J cosðqÞ=Γp : ð5Þ

The critical temperature can then be obtained by com-
bining this coupling constant, which was calculated using
strong coupling theory, with the standard expression (see,
for example, Ref. [40])

1 ¼ λ

2π2

Z
0

−EF

dϵNðϵÞ tanh ðϵ=2TcÞ
ϵ

; ð6Þ

where ϵ is the energy relative to the Fermi energy, EF, and
NðϵÞ is the density of states. The lower limit of the integral

(a)

(b)

FIG. 2 (color online). (a) Schematic phase diagram of STO as a
function of carrier doping and isotope replacement. The orange
circles mark the experimentally measured transition to super-
conductivity, as observed in Ref. [3]. The blue circles are the
measured transition temperatures [14] from the paraelectric (PE)
to the ferroelectric (FE) phase as a function of 18O isotope
substitution. Our DFT calculations suggest that the ferroelectric
phase penetrates slightly into the nonzero doping regime, but then
quickly disappears as doping suppresses ferroelectricity, although
no experimental data for this transition line is available. The
maximal value of doping at which the ferroelectric phase persists
is labeled as n�. Although we have no precise calculation for n�,
its value should lie in the range 1019 < n� < 1020. (b) Schematic
illustration for the lowering of the lowest energy levels (dashed
red lines) in the double well potential (black solid line) as f18 is
increased.
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is set by NðϵÞ ¼ 0 at and below the bottom of the band,
where ϵ < −EF. The upper limit is set by the Fermi level,
where we define ϵ ¼ 0. Since in the low doping scenario
that we consider here the relevant energy range is close to
the bottom of the band, we can assume that NðϵÞ ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ EF

p
close to ϵ ¼ −EF. Using x ¼ ϵ=Tc Eq. (6) then

becomes

D
λ
¼

ffiffiffiffiffi
Tc

p Z
0

−EF=Tc

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ EF=Tc

p tanhðx=2Þ
x

; ð7Þ

where D is a constant of proportionality. Note that Tc has a
double dependence on EF: one directly from the limit of the
integral in Eq. (7) and the other from the dependence of λ
on the tunneling rate Γ on EF through its dependence on the
carrier concentration.
Before we can solve Eq. (7) numerically to obtain Tc as a

function of EF, we need the explicit dependence of the
parameters of our model (1) on doping and isotope
replacement. The quantity with the largest quantitative
influence is the ratio Γ=2J, which is equal to one on the
QCL. For simplicity we set 2J ¼ 1 and consider only the
dependence of Γ. As discussed above, carrier doping
decreases the barrier between the two wells and thus
increases the tunneling energy Γ. This effect starts at
low doping and becomes very strong around carrier
concentrations of 1020e=cm3, best described by both a
linear and quadratic dependence on EF. 18O replacement on
the other hand should decrease Γ approximately linearly as
the zero-point energy levels shift deeper into the wells.
Furthermore, we require that at zero doping and 35% 18O
substitution, which is the known QCP, Γ should equal unity.
The following form captures these facts and is, therefore,
sensibly used in our calculations

Γ ¼ 1 − Aðf18 − 0.35Þ þ BE2
F þ CEF; ð8Þ

where f18 is the 18O fraction and the constants A, B, and C
are chosen so that the calculated Tc for f18 ¼ 0matches the
experimental value. We then use the expression Γ from
Eq. (8) and insert this into Eq. (7) to calculate Tc.
In Fig. 3 we plot our calculated Tc as a function of the

Fermi energy (converted to carrier concentration) for
various values of f18. Two features are clear from the
plot: (i) we find a significant enhancement of Tc with
increased 18O content, reflecting the fact that the isotope
substituted system is closer to the QCP. (ii) we find that the
peak of the superconducting dome shifts to lower carrier
concentrations, since the enhancement of λ and thus Tc is
strongest close to the QCP, as can be seen from Eq. (3). We
note that, even when f18 exceeds 0.35, doping quickly
reduces the depth of the double wells, allowing quantum
fluctuations to return STO to the quantum paraelectric state.
Thus, apart from the limit of very low doping, all systems
we consider have paraelectric, not ferroelectric ground

states. In our mechanism for superconductivity in STO,
increasing the atomic mass leads to an increase of the
critical temperature. That is ðdTc=df18Þ=Tc > 0 (for
details, see Supplemental Material [24], Sec. III). This
differs profoundly from the well-known isotope effect in
BCS superconductors, in which ðΔTc=TcÞ ¼ − 1

2
ðΔM=MÞ

[41], whereM is the mass of the atoms. This arises from the
dependence of Tc on the Debye frequency.
We have provided a description of the superconducting

dome in STO in which the QCP at zero doping provides
low energy soft phonon excitations, which lead to a large
coupling constant. Increasing the doping provides car-
riers for superconductivity but reduces the ferroelectric
quantum fluctuations and decreases the coupling con-
stant, eventually suppressing the superconductivity and
limiting the top of the superconducting dome. Since
isotope substitution allows tuning of the QCP, our model
predicts a large and unusual isotope effect on Tc,
see Fig. 3, which should be experimentally observable.
The understanding of the competition between carrier
concentration and proximity to a QCP developed here
provides a new design guideline in the search for novel
superconducting compounds and suggests a route to
engineering materials with higher Tc’s through tuning
the location of their QCP.
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Note added.—Recently, another closely related paper has
appeared [42].

FIG. 3 (color online). Calculated Tc as a function of doping
level for several fractions of isotope replacement, f18. The blue
diamonds are experimental results taken from Ref. [3]. Replacing
16O with 18O moves the QCP closer to the doping range relevant
for superconductivity and causes a significant enhancement in Tc.
We use the parameters A¼0.4, B¼10−6 K−2, C¼2.5×10−3K−1,
D ¼ 95 K1=2, as defined in the main text.
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