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The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk
excitations and Fermi arc surface states. We study the effects of disorder and localization in WSMs and find
three novel phase transitions. (i) Two Weyl nodes near the Brillouin zone boundary can be annihilated
pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition
from a WSM to a three-dimensional quantum anomalous Hall state. (ii) When the two Weyl nodes are well
separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a
WSM to a 3D diffusive anomalous Hall metal. (iii) Two Weyl nodes can emerge near the zone center when
an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator
to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall
conductivity, and propose that the novel phase transitions can be realized on a photonic lattice.
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Topological quantum states of matter have recently
emerged as an important and growing field in condensed
matter and materials physics [1,2]. The Weyl semimetal
(WSM) is a newly proposed quantum state of the kind
that breaks time-reversal symmetry or inversion symmetry
[3–12]. A WSM exhibits a set of paired zero-energy Weyl
nodes in its bulk spectrum and Fermi arc excitations
localized on the surface. A number of candidate materials
have been predicted to be WSMs [3–6]. Recently, follow-
ing the theoretical prediction [7], angle-resolved photo-
emission experiments confirmed that TaAs is a WSM [8].
Subsequently, both the Weyl nodes and the Fermi arcs have
been observed in NbAs [9]. Furthermore, the Weyl points
have been predicted and subsequently observed remarkably
in gyroid photonic crystals [10].
In this Letter, we study both numerically and analytically

the stability of the gapless Weyl nodes and Fermi arcs
against random potential scattering and the novel disorder-
induced metal-insulator transitions in WSM systems.
Previous studies have concentrated on the properties of a
single Weyl node, assuming that the disorder potential is
smooth enough to avoid scattering between different nodes
[13–17]. Indeed, a system with a single Weyl node is not
subject to Anderson localization even for strong disorder
[18]. However, the theorem of Nielsen and Ninomiya
states that gapless Weyl nodes with opposite chirality must
appear in pairs [19]. Thus, it is essential to study the
localization properties of a pair of Weyl nodes since they
can be annihilated pairwise when approaching each other
in momentum space or by strong intervalley scattering
[20–27]. To this end, we study a model system of quasi-3D

WSMs formed by stacking 2D quantum anomalous Hall
(QAH) layers along the z direction [5], which can support a
single pair of Weyl nodes in the first Brillouin zone (BZ),
and uncover a rich set of novel disorder and localization
effects. Consider the case when the Weyl nodes are located
close to each other, which can happen near either the zone
boundary or the zone center. We find that in the former
case, the Weyl points are unstable against disorder, which
causes the pair to merge at the zone boundary and
annihilate each other, thereby opening up a topologically
nontrivial gap in the bulk. This gives rise to a transition
from the WSM to the 3D QAH state with fully quantized
Hall conductivity. In the latter case, we find that the critical
state with two overlapping Weyl nodes at the zone center is
stable against disorder as they would repel each other and
lift the degeneracy in favor of a WSM. Moreover, if one
starts with a normal insulator (NI) with a band gap at the
zone center, increasing disorder would lead to the closing
of the band gap and the emergences of two repelling Weyl
nodes near the zone center, i.e., a NI to WSM transition. It
is thus rather remarkable that tuning the disorder strength
can switch the system between a WSM and a NI, as well as
between a 3D QAH and a WSM, in analogy to the“phase
switching” between a NI and a topological insulator by
disorder [28–31]. A pair of Weyl nodes well separated in
momentum space are found to be stable against weak
disorder. However, we find that strong enough disorder
induces bulk extended states and gives rise to a direct
transition from the WSM to a 3D diffusive anomalous Hall
(AH) metal [16,32]. This disorder-induced transition is
unconventional since it takes place between two metallic
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states and is only enabled by the topological character of
the WSM. We study the various multiple disorder-driven
phase transitions and obtain the phase diagram by evalu-
ating the localization length and the Hall conductivity
[33–38]. We also performed calculations using the self-
consistent Born approximation (SCBA) in order to gain
important analytical insights into the stability of the Weyl
nodes at weak disorder [39].
We begin with a simple 2 × 2 WSM Hamiltonian [4],

H0 ¼ ðmz − tz cos kzÞσz þm0ð2 − cos kx − cos kyÞσz
þ txσx sin kx þ tyσy sin ky; ð1Þ

with the model parameters tx;y;z, mz, m0 and Pauli matrices
σx;y;z. The lattice wave vectors kx;y;z are defined in the first
BZ of a Lx × Ly × Lz cubic lattice with the lattice constant
a≡ 1. H0 can be regarded as describing a layered (labeled
by kz) Dirac system coupled along the z direction by the
interlayer coupling tz. Diagonalizing H0 gives the energy-

momentum relation Ek¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

zþðtxsinkxÞ2þðtysinkyÞ2
q

,

where Δz ¼mz− tz coskzþm0ð2− coskx− coskyÞ. Note
that H0 breaks the time-reversal symmetry when Δz ≠ 0.
Adding the random on-site potential to H0, we obtain the
full Hamiltonian (with disorder)

H ¼ H0 þ
�
V1ðrÞ 0

0 V2ðrÞ
�

;

where V1;2ðrÞ are uniformly distributed within
½−W=2;W=2� with W representing the disorder strength.
The phase diagram of the clean WSM Hamiltonian H0 is

shown in Fig. 1 [40]. When tz ¼ 0, the layers decouple.
There are three critical points on the phase diagram denoted
by the red solid squares with massless Dirac nodes located at
the 2D BZ center (0,0) for mz=m0 ¼ 0 and at the zone
boundaries ð0; πÞ and ðπ; 0Þ formz=m0 ¼ −2 and ðπ; πÞ for

mz=m0 ¼ −4. They separate three gapped phases: theNI and
two QAH phases with 2D Hall conductances σ2Dxy ¼ −e2=h
(left) and e2=h (right), respectively [41]. Turning on the
interlayer coupling tz naturally leads to two 3DQAH phases
with a bulk topological gap and fully quantized Hall
conductivity σxy ¼ �e2=h [5]. More importantly, Fig. 1
shows that the WSM phase emerges between the 3D
QAH states and the NIs and is bordered by a pair of phase
boundaries emanating from each of the three 2D critical
points described by, from left to right, mz ¼ �tz − 4m0,
�tz − 2m0, and �tz. The WSM phase supports pairs of
gapless Weyl nodes split by tz along the kz direction and are
located at ½π;π;�arccosðmzþ4m0Þ=tz�, ½0;π;�arccosðmzþ
2m0Þ=tz� and ½π;0;�arccosðmzþ2m0Þ=tz�, and ½0;0;�
arccosmz=tz� between the corresponding pairs of phase
boundaries, respectively.
Below, we will focus on the parameter region −0.714 <

mz=m0 < 1.429 in the clean phase diagram (Fig. 1) by
setting tx;y;z=m0 ¼ 0.476 and investigate the disorder-
induced phase behaviors. The WSM phase in this regime
ð−1 ≤ mz=tz ≤ 1Þ has a single pair of Weyl nodes located
at ð0; 0;�k0zÞ, k0z ¼ arccosðmz=tzÞ. They move from the
zone center (0,0,0) to the zone boundary ð0; 0; πÞ as the
WSM traverses the NI and the 3D QAH phase boundaries.
Our main results are summarized in the phase diagram in

the presence of disorder (see Fig. 2 on the W-mz plane).
There are four distinct phases and five possible multiple
phase transitions with increasing disorder strength W:
(i) QAH-metal-NI, (ii) WSM-QAH-metal-NI, (iii) WSM-
metal-NI, (iv) NI-WSM-metal-NI, and (v) NI-metal-NI.
The phase boundaries indicated by the symbols and guided
by the solid lines are obtained by numerical computations
of the localization length and the Hall conductivity.
Note that the WSM-QAH and WSM-NI phase boundaries
at weak disorder agree remarkably well with the ones

FIG. 1 (color online). Phase diagram of the Weyl semimetal
Hamiltonian H0 on the tz=m0 −mz=m0 plane with tx ¼ ty ¼ 1.
The open and filled black circles correspond to the parameter
values studied for the disordered phase diagram shown in Fig. 2,
and the filled black circles to the localization length and Hall
conductivity shown in Figs. 3 and 4.

FIG. 2 (color online). Phase diagram on the W-mz plane.
The symbols guided by the solid lines are obtained from the
localization length. The two solid triangles correspond to
the phase boundaries in the clean limit. The blue dashed lines
are the phase boundaries determined using the SCBA.
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obtained analytically using the SCBA [40]. The findings
of such weak disorder-induced transitions between elec-
tronic states of different topological characters broaden
the concept of topological Anderson insulators [28–31]
and support the generality of the rich physics behind the
interplay of randomness and topology.
To calculate the localization length, we consider a 3D

long bar sample of length Lz and widths Lx ¼ Ly ¼ L with
periodic boundary conditions in the x and y directions. The
localization length λðLÞ is calculated using the transfer
matrix method [33–35]. In general, the normalized locali-
zation length Λ≡ λðLÞ=L increases with L in a metallic
phase, decreases with L in an insulating phase, and is
independent of L at the critical point of the phase transition.
The scale-dependent behaviors of Λ versus the disorder
strength W, obtained at different values of mz and shown
in Fig. 3, reveal a sequence of disorder-induced phase
transitions. In Fig. 3(a), the decrease of Λ with increasing L
at smallW places the system atmz=m0 ¼ −0.714 in the 3D
QAH state at weak disorder on the phase diagram (Fig. 2).
Increasing W encounters a critical point at W ≃ 6.0,
where dΛ=dL ¼ 0, beyond which a diffusive metallic
phase emerges as indicated by dΛ=dL > 0. The latter
has a nonzero Hall conductivity (see below) and is thus
identified with an AH metal. Further increasing W causes
another metal-insulator transition in Fig. 3(a) as the
system becomes an Anderson insulator at strong disorder.
Such disorder-induced multiple phase transitions
(QAH-AH-metal-NI) are analogous to those found in
multilayer quantum Hall structures and 3D Z2 topological
insulators [42–44].
Repeating this procedure at different values of mz=m0

maps out the disordered phase diagram shown in Fig. 2.
Note that the phase boundary between the QAH and WSM
is slanted toward the WSM side, which indicates that a
clean WSM in proximity to the QAH state (i.e., when
the Weyl nodes are close to k0z ¼ π) would be unstable
against disorder W and would undergo a sequence of

WSM-QAH-metal-NI transitions with increasing W. This
unexpected behavior can be deduced directly from the scale
dependence of the localization length in Figs. 3(b) and 3(c)
obtained at mz=m0 ¼ −0.452 and −0.381. To understand
this result, we performed SCBA valid for weak disorder
analytically [40], which amounts to determining the band
renormalization induced by disorder [28–31]. Interestingly,
the most important disorder-induced renormalization in
SCBA is for the topological mass mz, which enhances the
band inversion and causes the Weyl nodes to “attract” each
other to the zone boundary. When they meet at the zone
boundary, the Weyl nodes annihilate pairwise and open up
a nontrivial bulk gap, leading to the transition from the
WSM phase to the 3D QAH phase. This phase transition
can also be characterized by the phenomena that the Fermi
arc develops into the Fermi line in favor of fully quantized
Hall conductivity, to be discussed later. One can apply this
analysis to the phase boundary between the WSM and the
NI in Fig. 2 and find another surprising result. The WSM in
proximity to the NI with the pair of Weyl nodes close to the
zone center is stable against weak disorder since the effect
of renormalizing mz by disorder will cause the Weyl nodes
to repel and move apart. This explains why the phase
boundary is slanted toward the NI side in Fig. 2 and why
there is an unexpected transition from a NI to a WSM with
increasing disorder. Physically, as the insulating band gap
closes, a pair of gapless Weyl nodes is nucleated at the zone
center. The scale dependence of Λ shown in Fig. 3(f) at
mz=m0 ¼ 0.571 confirms this with the switching from
dΛ=dL < 0 to dΛ=dL > 0 at a critical W ≈ 3.3. Thus, a
pair of Weyl nodes with opposite chirality is stable against
intervalley scattering at weak disorder, provided that they
are sufficiently away from the zone boundary. We note that
the Weyl nodes attract each other near the zone boundaries
and repel each other near the zone center, which is
consequence of the fact that they tend to move from the
zone center to the zone boundaries. Remarkably, for strong
enough disorder, we find a direct transition from the WSM
to the AH metal that enables the WSM-metal-NI and NI-
WSM-metal-NI transitions shown in the phase diagram.
Such a phase transition comes from the emergent bulk
extended states induced by strong disorder [16,32] and is
thus an unusual transition between two metallic states, as
can be seen from the positive scale dependence dΛ=dL > 0
on both sides of the critical point in Figs. 3(d) and 3(e) and
on the two sides of the second scale-invariant point in
Fig. 3(f). Indeed, the WSM and the 3D diffusive AH metal
can be distinguished by the nature of the Hall conductivity
quantization.
To study the Hall conductivity and the Fermi arcs in

WSMs, we view the HamiltonianH0 as a set of 2D massive
Dirac Hamiltonians with fixed kz as in Burkov and co-
workers [5]. The 2D quantized Hall conductance in the x-y
plane at a fixed kz is given by σ2Dxy ðkzÞ ¼ Θðk0z − jkzjÞe2=h
[5,6,41,45]. The total Hall conductivity of the system is

FIG. 3 (color online). (a)–(f) Normalized localization length
Λ ¼ λðLÞ=L versus disorder strengthW at different massmz=m0.
The curves correspond to different sample widths L. Other
parameters are m0 ¼ 2.1 and tx;y;z ¼ 1.
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σxy ¼
P

kz∈BZσ
2D
xy =Lz, where kz takes on quantized values

in the first BZ of Lz layers under the periodic boundary
condition. Thus, σxy is proportional to 2k0z , the distance
between the twoWeyl nodes. It increases from zero to e2=h
as the pair of Weyl nodes moves from k0z ¼ 0 at the WSM-
NI boundary to k0z ¼ �π at the WSM-3D QAH boundary.
Therefore, the Hall conductivity can characterize the
positions of the Weyl nodes and the density of Fermi
arc surface states.
In the presence of disorder, we calculate the ensemble

averaged Hall conductivity σxy of quasi-3D samples using
the noncommutative Kubo formula under periodic boun-
dary conditions [36–38,46]. The results are shown in
Figs. 4(a)–4(f) at the corresponding parameters of the
localization lengths in Figs. 3(a)–3(f). Overall, σxy
increases with the disorder strength W initially and then
decreases with W in the strong disorder limit. Figure 4(a)
shows that the 3D QAH phase sustains a fully quantized
conductivity σxy ¼ e2=h until the system enters the dif-
fusive AH metal phase at W ≃ 6.0 where bulk extended
states emerge and σxy loses quantization, decreases withW,
and exhibits conductance fluctuations, in complete agree-
ment with the phase diagram obtained from the localization
length shown in Fig. 3(a). Figures 4(b) and 4(c) start in
the WSM phase close to the QAH phase boundary and
thus show the “fractional” quantized σxy ¼ 7e2=8h. Upon
increasing W, the pairs of Weyl nodes approach the zone
boundary and annihilate each other at a criticalW, while the
Fermi arcs turn into a set of chiral edge states and the Hall
conductivity acquires the maximum quantized value e2=h
of the QAH state [47]. Further increasing W leads to the
sequence of QAH-metal-NI transitions. Interestingly,
Figs. 4(d) and 4(e) show that when the Weyl nodes are
sufficiently away from the zone boundary, increasing

disorder leads to the discretized growth of the distance
between the Weyl points and thus the increase in the
fractions of the quantized Hall conductivity. However, the
Weyl nodes do not reach the zone boundary before being
destroyed by disorder amid a direct transition fromWSM to
3D diffusive AH metal as the Fermi arcs scatter through the
emergent bulk extended states [16,32]. The Hall conduc-
tivity is no longer quantized. It decreases with disorder and
vanishes at the transition to the Anderson insulator at strong
disorder. Thus, a Weyl semimetal can be distinguished from
a diffusive AH metal by the quantized fractions of the Hall
conductivity. Finally, Fig. 4(f) shows that as the band gap
closes with increasing disorder, a NI with σxy ¼ 0 can make
a transition to a WSM at a criticalW ≃ 3.3, by nucleating a
pair of Weyl nodes at the zone center such that σxy increases
from 0 to e2=8h and then to 3e2=8h as the distance between
the nodes and the density of the Fermi arc states increase
with disorder. At W ≃ 8 and before the Weyl nodes can
reach the zone boundary, the WSM-AH metal transition
takes place. We stress that all the phase behaviors obtained
from the Hall conductivity are in quantitative agreement
with those determined from the localization length in Fig. 3
and displayed in the phase diagram in Fig. 2, including the
location of the phase boundary. This further demonstrate
the consistency and reliability of the obtained results.
In summary, we studied the effects of disorder and

Anderson transition in the simplest WSMs with two Weyl
nodes and obtained an unexpectedly rich phase diagram.
We find that weak disorder has important effects when
the Weyl nodes are close in momentum space. The pair
annihilation near the zone boundary and the pair nucleation
at the zone center lead to WSM to QAH and NI to WSM
transitions. Moderately strong disorder, on the other hand,
produces a WSM to diffusive AH metal transition. These
results have important implications for real WSM materials
discovered recently [7–9] which have multiple pairs of
Weyl nodes. We note that, although our results can apply to
the WSM materials with a pair of Weyl nodes, an open
question remains as to whether they can be directly applied
to multiple pairs of Weyl nodes. Furthermore, the WSM
phase has been observed recently in gyroid photonic
crystals where disorder can be introduced and controlled
by a speckled beam [10,48]. In photonic crystals, the
bulk gap can be detected by bulk transmission measure-
ments while the highly directional surface transmission
spectroscopy can be used to detect the chiral surface state
through its unidirectional group velocity [49]. We therefore
propose that the novel phase transitions found here can
be readily tested on optical lattices such as in gyroid
photonic crystals.
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FIG. 4 (color online). (a)–(f) Ensemble averaged Hall conduc-
tivity σxy as a function of the disorder strength W on 30 × 30 × 8
samples. The parameters are in one-to-one correspondence to
Fig. 3(a)–3(f). The red dash-dotted lines are guides to the eye.
The error bars are magnified 10 times to show conductance
fluctuations.
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