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We report on the experimental observation of scaling in the time evolution following a sudden quench
into the vicinity of a quantum critical point. The experimental system, a two-component Bose gas with
coherent exchange between the constituents, allows for the necessary high level of control of parameters as
well as the access to time-resolved spatial correlation functions. The theoretical analysis reveals that when
quenching the system close to the critical point, the energy introduced by the quench leads to a short-time
evolution exhibiting crossover reminiscent of the finite-temperature critical properties in the system’s
universality class. Observing the time evolution after a quench represents a paradigm shift in accessing and
probing experimentally universal properties close to a quantum critical point and allows in a new way
benchmarking of quantum many-body theory with experiments.
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Scaling laws and symmetries are at the foundations of
modern science. They allow us to put phenomena as
different as opalescent water under high pressure, protein
diffusion in cell membranes [1], and early-universe infla-
tionary dynamics [2,3] on the same structural footings.
Typically, scaling is observed in thermal equilibrium or in
relaxation dynamics close to equilibrium [4–9], while
recently the scaling hypothesis has been extended to far-
from-equilibrium dynamics [7,10–12].
For spatially extended systems, it is natural to ask how its

different parts are correlated with each other. Close to
critical configurations, the essential physics is typically
captured by a single parameter ε measuring the distance to
criticality, and a universal function. Generalizing this to
nonequilibrium quantum dynamics implies that the uni-
versal function explicitly includes time evolution. For
example, given a time-dependent characteristic length scale
ξ, scaling implies a self-similarity relation

ξðs−νzt; sεÞ ¼ s−νξðt; εÞ; ð1Þ

with positive scaling factor s and critical exponents ν, z.
This relation reflects that the spatial structure for fixed
system parameter ε at a given time is the same as the
structure at different ε, at suitably rescaled times.
Our experiments reveal such scaling behavior in a

rubidium condensate in a quasi-one-dimensional configura-
tion. The atoms are in two hyperfine states, which we denote
as j↑i ¼ jF ¼ 2; mF ¼ −1i and j↓i ¼ jF ¼ 1; mF ¼ 1i.
The collisional interaction between atoms in these states is
tuned by use of an interspecies Feshbach resonance [13,14]
such that the system is in the immiscible regime; i.e., the two
components tend to minimize their overlap [Fig. 1(a)].
Specifically, the interspecies scattering length a↑↓ is chosen

larger than the intraspecies scattering lengths a↑↑ and a↓↓.
In the experiment, we chose α ¼ a↑↓=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffia↑↑a↓↓
p ≈ 1.23.

Demixing of such kind has already been observed exper-
imentally [15–17], and studied theoretically [18–23].
Varying the strength of linear Rabi coupling between the
two atomic species allows tuning across a quantum phase
transition between the immiscible and miscible regimes.
Here, we study the dynamics after a sudden change, i.e.,

quench, of the linear coupling, observing the time evolution
of the spatially resolved density patterns of the two
components n↑ðyÞ and n↓ðyÞ along the extended axis of
the trap, on either side of the miscible-immiscible transition
[Fig. 1(b)]. Because of the repulsive interactions between
the individual components, the local atomic density ρðyÞ ¼
n↑ðyÞ þ n↓ðyÞ is to a very good approximation constant,
such that only the density difference n↑ðyÞ − n↓ðyÞ fluc-
tuates. Consequently, the gas can be considered as a
homogeneously distributed, coupled collective spin ensem-
ble, characterized by a continuous angular-momentum field
JðyÞ [Fig. 2(a)]. The longitudinal extension of ∼200 μm
allows us to explore the miscible regimewhere the expected
length scales are of the order of a few microns, as well as
the immiscible side, with expected domain sizes of a few
tens of microns. The z component JzðyÞ ¼ ½n↑ðyÞ −
n↓ðyÞ�=ρðyÞ of the “Schwinger spin” normalized to the
total density is related to the density difference, and spin
correlations Gzzðy; y0; tÞ ¼ hJzðyÞJzðy0Þit between differ-
ent points y; y0 can be determined from the density patterns
[Fig. 1(b)].
The long-wavelength dynamics of our spin fluid

is given, to a good approximation [24], by a translationally
invariant nonlinear XXX-type Heisenberg Hamiltonian
density [37],
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H ¼ ½j∂yJj2=4þΩJx −ΩcJ2z=2�ρ=2: ð2Þ

The first term represents the Heisenberg spin coupling. The
term ΩJx provides the local coupling of the two compo-
nents, in analogy to an effective magnetic field acting
transversely to the spin Jz, with strength given by the Rabi
frequency Ω of the linear coupling. In addition, a
“single-ion anisotropy” [38] term J2z appears, which results
from the local collisional interaction between the two
components, with Ωc ¼ ρgðα − 1Þ proportional to the
tunable interaction strength between the spins. As the
scattering lengths of the respective rubidium hyperfine
scattering channels are very close, we take
a↑↑ ¼ a↓↓ ¼ g=ðℏω⊥Þ, such that α ¼ ℏω⊥a↑↓=g. This
system reveals, at zero temperature, a quantum phase
transition at Ω ¼ Ωc, where the Rabi-induced mixing of
the components cancels the effect of the interspecies
scattering, with the order parameter given by the
magnetization hJzi. Specifically, for a strong effective
magnetic field Ω > Ωc the spins in the ground state are
polarized in the x direction; i.e., the two components cannot
spatially separate although the bare system (Ω ¼ 0) is
phase separating. This is confirmed experimentally
[Fig. 1(b)].
A generic scaling hypothesis which includes dynamics

out of equilibrium implies that the spin-spin correlations
hJzðyÞJzðy0Þit;ε ¼ Gzzðy − y0; t; εÞ after a sudden quench of
the linear coupling obey

Gzzðs−νy; s−νzt; sεÞ ¼ s−ν−ηGzzðy; t; εÞ; ð3Þ

where ε ¼ Ω=Ωc − 1 is determined by the final effective
magnetic field Ω after the quench. ν and z are critical
exponents, and η is known as anomalous exponent. In the
experiment we reach this out-of-equilibrium regime by
initially preparing the system with a fast π=2 microwave
radio frequency pulse in a Jx spin state, which is the ground
state of the system in the infinite-linear-coupling limit
(Ω ≫ Ωc). Then, the intensity of the radio frequency field
is quickly reduced, switching ε to its final value. Adjusting
the linear coupling during the following evolution com-
pensates for the change of Ωc due to the loss of particles,
which was independently determined.
The correlations Gzzðy; t; εÞ developing on the miscible

side (ε > 0) are shown in Fig. 2(b), in comparison with
homogeneous Bogoliubov–de Gennes theory predictions
[39], averaged over the density inhomogeneity in the trap
and convoluted with the optical point spread function of the
imaging system. Fitting an exponential to the short-distance
falloff of the observed correlation functions, we extract a
correlation length ξðt; εÞ which shows near-linear growth
after the initial quench [Fig. 2(c)]. The Bogoliubov pre-
diction (solid lines) qualitatively reproduces this rise as
well as the oscillations seen for larger ε. The damping of the
oscillations seen at smaller ε is attributed to effects of the
transverse trapping potential.
We extract the maximum correlation length for different

ε within the first 12 ms after the quench, where this
observable is still weakly affected by the atom loss.
Using the theoretically expected exponent of 0.5 for
rescaling the correlation functions at a fixed time
(t ¼ 12 ms) they all fall on a universal curve [Fig. 3(a),

FIG. 1 (color online). Details of the experimental system. (a) Phase diagram, distinguishing miscible and immiscible phases of the
elongated degenerate Bose gas of rubidium atoms in F ¼ 2 (blue) and F ¼ 1 (red) hyperfine states. The state of the system is controlled
by linear coupling of the levels, with Rabi frequency Ω, and by tuning the collisional interaction between atoms in the hyperfine states,
quantified by the relative strength α ¼ a↑↓=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffia↑↑a↓↓
p of inter- and intraspecies scattering lengths (experimentally fixed to α ≈ 1.23). A

quantum phase transition occurs at Ωc ¼ ρgðα − 1Þ, with 1D atom density ρ and intraspecies coupling constant g. (b) The system is
initially prepared far in the miscible regime, and then Ω quenched close to Ωc. After different evolution times the two species are
absorption imaged. Snapshots of the patterns emerging on either side of the transition are shown, with corresponding normalized density
imbalance ½n↑ðyÞ − n↓ðyÞ�=ρ and density correlation functions between spatially separated points y and y0. The correlations on the
miscible side exhibit decay on a characteristic length scale, while oscillations on the immiscible side reflect domain formation as seen in
the density.
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upper panels]. Extracting characteristic length scales as
indicated, we find scaling according to Eq. (1) [lower
panels of Fig. 3(a)]. The exponent extracted from a linear fit
of ξ on a double-log scale is ν ¼ 0.51� 0.06 [Fig. 3(a),
lower right-hand panel]. The scaling exponent is robust
with respect to varying the range of the exponential fit of
the correlation functions and the way of extracting a
characteristic length after the initial linear rise. In the
immiscible regime, ε < 0, we choose the domain size Ld

and find an exponent of ν ¼ 0.51� 0.04 [Fig. 3(a), lower
left-hand panel]. As a result, in both the miscible and
immiscible regimes, we find self-similarity under rescaling
y → ενy with ν ¼ 1=2, with correlations following differ-
ent universal functions.

To obtain the dynamical exponent z we analyze the
observed time dependence of the correlation functions,
focusing on the point of time τ where ξðtÞ levels off after
the initial linear rise [Fig. 3(b), upper panel]. For this, we
determine the crossing point of two independent linear fits
to the short- and long-time behavior. The resulting depend-
ence of τðεÞ is compared on a double-log scale to a power
law with exponent νz ¼ 1=2 [Fig. 3(b), lower panel, dashed
line]. The deviation of our data from this power law for
large ε can be understood within Bogoliubov theory, which
predicts ξðt; εÞ ¼ ð2mΩcεÞ−1=2j sinðΔðεÞtÞj [24]. The time
t1;ε of the first maximum [solid line in Fig. 3(b), lower
panel], related to the characteristic time τ, is inversely
proportional to the gap, i.e., zero-momentum-mode fre-
quency ΔðεÞ ¼ Ωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðεþ 1Þp

.
On either side of ε ¼ 0, the critical exponents extracted

from our data are consistent with Bogoliubov–de Gennes
mean-field predictions. To reveal the limitations of mean-
field theory and study the effects due to the excitation of
total-density fluctuations, we have performed semiclassical
simulations of coupled Gross-Pitaevskii equations for the
two components (Fig. 4). We define a correlation length ξ0
in terms of the zero-momentum limit of the Fourier
transform of the spin-spin autocorrelation function,
Gzzðk;t;εÞ¼

R
dyexpf−ikygGzzðy;t;εÞ [24]. For ε > 0.1,

we find very good agreement of the computed correlation
length at the first maximum (blue points) with mean-field
scaling (solid black line). The numerical data show that, for
ε≲ 0.05, the extracted correlation length scale at the first
maximum deviates from a simple mean-field power law
and saturates to a finite value at vanishing ε. This ε
dependence of ξ0 shows universal crossover behavior
reminiscent of an equilibrium one-dimensional Ising sys-
tem [40]. The spontaneous breaking of the discrete Z2

symmetry under Jz → −Jz allows for spin-↑=↓ domain
formation, and, thus, according to the standard theory of
critical phenomena, the transition in our system
belongs to the Ising universality class [41]. The analysis
of the numerically observed crossover behavior
requires a discussion of nonperturbative corrections to
the experimentally observed mean-field scaling. As seen
in Fig. 4, our current experiment touches on the regime
where nonperturbative corrections start to become
important.
In conclusion, we have demonstrated the possibility of

probing universal properties close to a quantum critical
point by quenching the system out of equilibrium and
observing the short-time evolution long before equilibra-
tion. With that, our experiment opens a new path to study
universal properties building on phase coherence in closed
many-body systems. This is essential for benchmarking
quantum many-body theory, moving towards a quantum
simulator of universal critical phenomena.

FIG. 2 (color online). Time evolution of correlations after
quench to the miscible side of the quantum phase transition.
(a) Two-component gas as a coupled collective spin ensemble.
The spatially resolved density difference between F ¼ 1 and
F ¼ 2 allows the extraction of the local z component of the
collective spin vector JðyÞ. (b) Measured spin correlation function
Gzzðy; y0; tÞ ¼ hJzðyÞJzðy0Þit at three different times after a
quench to ε ¼ Ω=Ωc − 1 ¼ 0.17, showing buildup of spatial
correlations. Solid black lines show Bogoliubov–de Gennes
mean-field predictions. (c) Time evolution of the correlation
length ξðt; εÞ, for three different ε, deduced by fitting an
exponential to the short-distance falloff of the extracted corre-
lation data. The Bogoliubov evolution (solid lines) recovers the
initial near-linear rise of ξ, with slope given by the speed of (spin-
wave) sound, and captures the maximum correlation length at a
characteristic time depending on ε. The predicted oscillatory
behavior is experimentally observed for larger ε, while the
maximum correlation length reached at short times is robustly
detected in all cases. Dashed lines serve as a guide to the eye,
marking the predicted first maxima. For the scaling analysis of
the data, the correlation lengths are compared at a fixed time;
see Fig. 3.
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