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We demonstrate how the physics of multiboson correlation interference leads to the computational
complexity of linear optical interferometers based on correlation measurements in the degrees of freedom
of the input bosons. In particular, we address the task of multiboson correlation sampling (MBCS) from the
probability distribution associated with polarization- and time-resolved detections at the output of random
linear optical networks. We show that the MBCS problem is fundamentally hard to solve classically even
for nonidentical input photons, regardless of the color of the photons, making it also very appealing from an
experimental point of view. These results fully manifest the quantum computational supremacy inherent to
the fundamental nature of quantum interference.
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Motivation.—The interference of multiple bosons based
on high-order correlation measurements [1–3] in a linear
network is a phenomenon that is fundamental in atomic,
molecular, and optical physics. The richness of its features
gives rise to a wide variety of applications in quantum
information processing [1,4,5], quantum metrology [6–8],
and imaging [9]. Already correlated detections of two
bosons after the interaction with a balanced beam splitter
reveal an interference effect of truly quantum mechanical
origin [10–13]: both particles always end up in the same
output port due to the destructive interference of the two-
boson quantum paths in which the bosons are either both
reflected or both transmitted.
Going to higher-order correlationmeasurements in optical

networks of large dimensions, multiboson interference
becomes increasingly complex, promising a computational
power that is not achievable classically [14,15]. Multiphoton
correlation experiments with more than two photons have
already been performed [16–26], providing an important
milestone towards experiments of higher orders [27,28].
These experiments are usually based on joint measure-

ments at the interferometer output ports “classically” aver-
aging over the photons’ degrees of freedom (e.g., time,
polarization). In this context,Aaronson andArkhipovargued
the computational hardness of multiboson interference in
linear optics for identical bosons by introducing the well-
known boson sampling problem [14]. Does this computa-
tional hardness also occur for nonidentical photons? While
the computational complexity for partially distinguishable
photons is still not known [15], it is clear that boson sampling
becomes computationally trivial for fully distinguishable
photons when the information about the detection times and
polarizations is completely ignored.
However, recent technological advances have enabled

experimentalists to produce arbitrarily polarized single
photons with near arbitrary spectral and temporal properties

[29–31] which can be “read out” by time- and polarization-
resolving measurements [1,32–35] with extremely fast
detectors [36]. This makes it possible to encode entire
“quantum alphabets” in the degrees of freedom of multiple
photons [37,38] and to retrieve the encoded information
by correlation measurements in those degrees of freedom,
representing a valuable tool in quantum information
processing [1,39–52].
All these remarkable technological achievements now

allow experimentalists to fully address the following funda-
mental questions about the interplay between the physics and
the complexity of multiboson interference: How do the
spectral distributions of N nonidentical photons determine
the occurrence of N-photon interference events in time- and
polarization-resolving correlatedmeasurements?Howand to
what degree is this occurrence connectedwith computational
complexity? Does computational hardness really disappear
for input bosons that are completely distinguishable in their
spectra? This Letter aims to answer all these important
questions, from both a fundamental and an experimental
point of view, demonstrating the inherent computational
complexity of the physics of multiboson correlation inter-
ference even for nonidentical photons.
Multiboson correlation sampling (MBCS).—We con-

sider N single photons prepared at the N input ports of
a linear interferometer (see Fig. 1) with 2M ≫ 2N ports.
The interferometer unitary transformation U is chosen
randomly according to the Haar measure and is imple-
mented by using a polynomial number (in M) of passive
linear optical elements [53]. The state of N single photons
injected in a set S of N input ports s ∈ S is given by

jSi ≔ ⨂
s∈S

j1½ξs�is⨂
s∉S

j0is;

with the single photon states
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j1½ξs�is ≔
X
λ¼1;2

Z
∞

0

dω½eλ · ξsðωÞ�â†s;λðωÞj0is; ð1Þ

where fe1; e2g is an arbitrary polarization basis and â†s;λðωÞ
is the creation operator for the frequency mode ω and the
polarization λ [54]. The complex spectral amplitude

ξsðωÞ ≔ vsξsðω − ωsÞeiωt0s ð2Þ
is defined by the spectral shape ξsðω − ωsÞ ∈ R [centered
around the central frequency (photon color) ωs and with
normalization

R
dωjξsðωÞj2 ¼ 1], the polarization vs, and

the time t0s of emission of the photon injected in the port
s ∈ S. For simplicity, we consider input-photon spectra
satisfying the narrow bandwidth approximation and a
polarization-independent interferometric evolution with
equal propagation time Δt for each possible path from
an input source to a detector at the interferometer output.
Given such a multiboson interferometer and assuming

identical photons, ξs ¼ ξ ∀s ∈ S, the boson sampling
problem [14] was defined by Aaronson and Arkhipov as
the task of sampling from the probability distribution over
the output port samplesD, regardless of detection times and
polarizations. We address here an interesting generalization
of this famous problem by introducing the problem of
multiboson correlation sampling (MBCS) [1,55]. The
MBCS problem is defined as the task of sampling at the
interferometer output from the probability distribution
associated with time- and polarization-resolving correlation
measurements. Each possible sample corresponds to an
N-photon detection event at an N-port subset D of the M
output ports at given times and polarizations ftd; pdgd∈D,
with pd ∈ fe1; e2g [56]. The N-photon detection proba-
bility rate corresponding to a sample ðD; ftd; pdgd∈DÞ
depends [1] on both the N × N submatrix

UðD;SÞ ≔ ½Ud;s�d∈D
s∈S

of the M ×M unitary matrix U describing the interferom-
eter, and the Fourier transforms

χ sðtÞ≔F ½ξs�ðt−ΔtÞ¼ vsχsðt− t0s−ΔtÞeiωsðt−t0s−ΔtÞ ð3Þ
of the single-photon spectra ξsðωÞ in Eq. (2) [with χsðtÞ
being the Fourier transform of ξsðωÞ]. Defining the
matrices

T ðD;SÞ
ftd; pdg ≔ fUd;s½ pd · χ sðtdÞ�gd∈D

s∈S

and using the definition

permM ≔
X
σ∈ΣN

YN
i¼1

Mi;σðiÞ

of the permanent of a matrix M, where the sum runs over
all permutations σ in the symmetric group ΣN , the prob-
ability rate of an N-fold detection event ðD; ftd; pdgd∈DÞ is

GðD;SÞ
ftd; pdg ¼

���perm T ðD;SÞ
ftd; pdg

���2; ð4Þ

for ideal photodetectors.
By considering an integration time TI short enough

such that

∀td∶ χsðt − t0s − ΔtÞχs0 ðt − t0s0 − ΔtÞeiðωs−ωs0 Þt ≈ const:

∀t ∈ ½td − TI; td þ TI�; ∀s; s0 ∈ S; ð5Þ

we obtain, for a detection sample ðD; ftd; pdgd∈DÞ, the
probability

PðD;SÞ
ftd; pdg ¼ ð2TIÞN jperm T ðD;SÞ

ftd; pdgj2 ð6Þ

of an N-fold detection in the time intervals
f½td − TI; td þ TI�gd∈D, where the detection time axes
are discretized with step width 2TI .
We emphasize that, for each possible sample

ðD; ftd; pdgd∈DÞ, the probability in Eq. (6) is at most
exponentially small in N, as demonstrated in Theorem 1
in the Supplemental Material [57].
Exact MBCS.—Obviously, the complexity of sampling

exactly from the probability distribution defined by Eq. (6)
depends on the N-tuples fξsgs∈S of single-photon input
spectra in Eq. (2) [61].
With that in mind, in order to establish the complexity of

exact MBCS, it is useful to define the N-photon interfer-
ence matrix with elements

aðs;s0Þ≔ jvs · vs0 j
Z

∞

−∞
dtjχsðt− t0sÞjjχs0 ðt− t0s0 Þj≤ 1; ð7Þ

with s, s0 ∈ S, depending on the pairwise overlaps of the
absolute values of the temporal single-photon detection
amplitudes [62] χsðt − t0s − ΔtÞeiωsðt−t0s−ΔtÞ and of the
polarizations vs in Eq. (3). For nonvanishing elements

FIG. 1 (color online). General setup for multiboson correlation
sampling. N single photons are injected into an N-port subset S
of the M ≫ N input ports of a random linear interferometer. At
the output of the interferometer, they are detected in one of the
possible port samples D containing N of the M output ports at
corresponding detection times and polarizations ftd; pdgd∈D. For
each output port sample D and given input configuration S,
the evolution through the interferometer is fully described by a
N × N submatrix UðD;SÞ of the M ×M interferometer matrix U.
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0 < aðs; s0Þ ≤ 1 ∀s; s0 ∈ S; ð8Þ

there exists a time interval T and at least a polarization
eλ̄ ∈ fe1; e2g, such that

eλ̄ · χ sðtdÞ ≠ 0 ∀td ∈ T; ∀s ∈ S; ∀d ∈ D:

It is then ensured that for each detection sample
ðD; ftd; pdgd∈DÞ, with td ∈ T, pd ¼ eλ̄ ∀d ∈ D, the input
photons are indistinguishable at the detectors: this leads to
the interference of all possible N! N-photon quantum paths
manifested by the coherent superposition of all correspond-
ing, nonvanishing N! N-photon detection amplitudes in
Eq. (4). Therefore, only the conditions Eqs. (5) and (8) for
the nonidentical input spectra fξsgs∈S in Eq. (2) are enough
to ensure the occurrence of N-photon correlation interfer-
ence events.
Even more interestingly, the same simple conditions lead

to the computational hardness of the exact MBCS problem,
establishing a connection between the occurrence of multi-
photon correlation interference and complexity. Indeed, for
approximately equal detection times td ≈ t ∈ T and equal
polarizations pd ¼ eλ̄, ∀d ∈ D, the multiphoton detection
probabilities in Eq. (6) become

PðD;SÞ
ftd; pdg ¼ jpermUðD;SÞj2ð2TIÞN

Y
s∈S

jeλ̄ · χ sðtÞj2: ð9Þ

The interference of all N-photon quantum paths in Eq. (9)
depends, apart from an overall factor, only on the perma-
nent of a submatrix UðD;SÞ of the interferometer random
unitary matrix U. For N ≪ M, these matrices have ele-
ments given by approximately independent and identically
distributed (i.i.d.) Gaussian random variables and the
approximation of their respective permanents is a #P-hard
task [14]. We emphasize that the presence of only an
arbitrarily small fraction of samples with probabilities as in
Eq. (9) would be enough to ensure the hardness of the exact
MBCS. This can be shown analogously to the hardness
proof of the original problem of exact boson sampling in
Ref. [14]. Indeed, the ability to perform exact MBCS with a
polynomial number of resources would imply that the task
of approximating any given, fixed permanent associated
with the probability distribution, Eq. (6), is in the complex-
ity class BPPNP. Since this would also include the task of
approximating the #P-hard permanents emerging in Eq. (9),
the polynomial hierarchy would collapse to the third level,
which is strongly believed to be highly unlikely. We refer to
Sec. II of the Supplemental Material for more details [57].
Interestingly, differently from the original boson sam-

pling problem [14], the classical intractability of exact
MBCS is not conditioned on input photons with approx-
imately identical spectra ξs in Eq. (2). Only the simple
conditions Eqs. (5) and (8) on the spectra are enough to
guarantee its computational hardness.

Approximate MBCS.—Is approximate MBCS also not
tractable with a classical computer? Such a question is
obviously of fundamental importance from an experimental
point of view, since it takes into account the inevitable
experimental errors in an MBCS quantum interferometer
which make only approximate sampling possible [61]. We
consider, for simplicity, the case of an N-photon interfer-
ence matrix in Eq. (7) with unit elements

aðs; s0Þ ≅ 1 ∀s; s0 ∈ S: ð10Þ
This corresponds to two possible scenarios. Either all the
input photons are completely identical or they differ only
by their color, i.e., central frequency. In these cases the
input photons have equal polarizations and are always
indistinguishable at the detectors independently of the
detection times and polarizations.
To simplify the expressions, we consider here polariza-

tion-insensitive detectors.
(i) Identical input photons: For approximately identical

frequency spectra

ξsðωÞ ≅ ξðωÞ ∀s ∈ S;

by using Eq. (6), the polarization-insensitive detection
probability reads

PðD;SÞ
ftdg ≔

X
fpdg∈fe1;e2gN

PðD;SÞ
ftd; pdg

¼ jpermUðD;SÞj2ð2TIÞN
Y
d∈D

jχ ðtdÞj2;

where we used the property
P

pd¼e1;e2 jpd · vj ¼ jvj2 ¼ 1. Of
course the only possible events occur within a detection-
time interval where the function jχ ðtdÞj ¼ jF ½ξ�ðtd − ΔtÞj
is not negligible. Here, independently of the detection
times ftdgd∈D, all the probability rates associated with
each possible sample ðD; ftdgd∈DÞ are given, apart from a
prefactor, by the permanents of N × N submatrices UðD;SÞ
of the interferometer transformation U.
When the observer ignores the information about the

detection times the approximate MBCS problem reduces to
the well-known standard formulation of the approximate
boson sampling problem, which Aaronson and Arkhipov
argued to be intractable with a classical computer [14].
Therefore, the approximate MBCS problem is at least as
complex as the original approximate boson sampling
problem.
(ii) Photons of different colors: We now address the case

of input photons in Eq. (1) with spectral distributions

ξsðωÞ ¼ vξðω − ωsÞeiωt0 ;

with equal emission times t0s ¼ t0 and equal polarizations
vs ¼ v but different colors ωs. For simplicity, we consider
spectral shapes
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ξðωÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
πΔω

p sinc

�
ω

Δω

�

with equal bandwidths Δωs¼Δω≲ jωs−ωs0 j∀s, s0, where
sinc x ≔ sin x=x. The N-photon interference at the detectors
is therefore characterized by the Fourier transforms

χ sðtÞ ¼ v

ffiffiffiffiffiffiffi
Δω
2

r
rect

�
Δωðt − t0 − ΔtÞ

2

�
eiωsðt−t0−ΔtÞ;

with the rectangular function

rect x ≔

8><
>:

1 jxj < 1
2

1
2

jxj ¼ 1
2

0 else

:

Therefore, the condition Eq. (10) is satisfied, and the
probability rates inEq. (4) are nonvanishingonly for detection
times td ∈T≔ ½t0þΔt−1=Δω; t0þΔtþ1=Δω� ∀d∈D.
Moreover, Eq. (5) is fulfilled for integration times

TI ≪ jωs − ωs0 j−1 ∀s; s0 ∈ S; ð11Þ
where ðTIΔωÞ−1 defines the number of discrete steps of
length 2TI along the time interval T. As is known, detectors
with such high time resolution cannot distinguish photons of
different colors ωs and multiphoton interference can be
observed. Indeed, from Eq. (6), the polarization-independent
detection probabilities are

PðD;SÞ
ftdg ¼ ðΔωTIÞN jperm ð½UðD;SÞ

d;s eiωstd �d∈D
s∈S
Þj2 ð12Þ

for all possible detection time intervals ½td−TI;tdþTI�⊂T.
Such probabilities are proportional to permanents of matrices
whose elements are the elements of UðD;SÞ multiplied by the
complex phases expðiωstdÞ.
Since the elements UðD;SÞ

d;s of the submatrices UðD;SÞ are
i.i.d. Gaussian random variables and the phase factors eiωstd

only rotate such elements in the complex plane, the entries

of the matrices ½UðD;SÞ
d;s eiωstd �d∈D

s∈S
are also i.i.d. Gaussian

random variables as shown in Appendix C of the
Supplemental Material [57]. Therefore, the probability
distribution of the interferometer output interestingly
depends, for all possible samples, on permanents whose
approximation to within a multiplicative factor is a #P-hard
problem [14]. Consequently, even for input photons of
different colors, it is possible to show in analogy with
Ref. [14] that approximate MBCS is of at least the same
complexity as the standard boson sampling with identical
photons [63]. As a “bonus,” the number of possible samples
ðD; ftdgd∈DÞ is exponentially larger [by a factor ðTIΔωÞ−N
with TIΔω ≪ 1 according to Eq. (11)] with respect to the
standard boson sampling problem.
Does approximate MBCS retain its complexity even for

photons which are completely pairwise distinguishable in

their colors ωs (i.e., ωs − ωs0 ≫ Δω ∀s ≠ s0)? We first
emphasize that, since these photons are characterized by a
pairwise overlap

Z
∞

0

dω ξsðωÞ · ξs0 ðωÞ ≅ 0 ∀s ≠ s0; ð13Þ

the approximate boson sampling problem is trivial [14].
Indeed, in this case, by averaging the rate in Eq. (4) over all
possible detection times and polarizations, one finds that
the boson sampling probability [1]

PðD;SÞ ¼ perm ½jUðD;SÞ
d;s j2�d∈D

s∈S
;

for an output port sample D, is given by the permanent of a
non-negative matrix that can be approximated with a
polynomial number of resources [64]. Consequently, one
might guess that also the approximate MBCS is computa-
tionally trivial. Nonetheless, the complexity emerging from
the result in Eq. (12) is independent of the colors ωs of the
input photons, demonstrating that also in this case approxi-
mate MBCS is classically intractable.
Two essential physical aspects are behind the demonstrated

complexity of approximate MBCS: all possible detection-
time events can be an outcome of the sampling experiment
(none of the events is disregarded) and all these time samples
arise from the interference ofN!multiphoton quantum paths.
In conclusion, the physics of sampling among all possibleN-
photon interference events behind our proposal is at the heart
of the complexity of approximate MBCS.
Discussion.—In this Letter, we demonstrated how

and to what degree the occurrence of multiphoton interfer-
ence in time- and polarization-resolving correlation mea-
surements leads to computational hardness in linear optical
interferometers.
The definition of anN-photon interference matrix aðs; s0Þ

in Eq. (7) allowed us to formulate the simple sufficient
condition Eq. (8) on the spectra of the input photons for the
occurrence of N-photon interference, provided sufficiently
small integration times [see Eq. (5)].
Remarkably, these two simple conditions are also suffi-

cient to guarantee the complexity of exact MBCS. In
contrast, the complexity of the original exact boson sampling
problem has only been proven for identical input photons.
For approximate MBCS on the other hand, not only the

existence of samples exhibiting full N-photon interference
[guaranteed by Eq. (8)] is important but also their fraction
with respect to the total number of samples. Interestingly,
this is encoded in the magnitude of the entries aðs; s0Þ of the
N-photon interference matrix in Eq. (7).
It was thus natural to consider the simple case of full

overlap of the modulus of the single-photon detection
amplitudes [aðs; s0Þ ¼ 1] where all possible detection
events correspond to N-photon interference samples
[65]. In this case, corresponding to identical input photons
or photons with arbitrary colors, approximate MBCS is at
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least of the same complexity as boson sampling with
identical photons.
This is particularly interesting if the differences in the

central frequencies are much larger than the width of the
single photons’ spectral shapes, corresponding to fully
distinguishable photons in the sense of Eq. (13). While
approximate boson sampling becomes trivial in this case
[14], approximate MBCS is at least as complex as when
perfectly identical input photons are used.
Since detectors with high temporal resolution (<1 ns)

and single photons with large coherence times (>1μs)
are readily available today experimentally [36], the
requirement of time-resolved measurements in the imple-
mentation of the MBCS problem can be readily fulfilled.
Moreover, an implementation of MBCS has the advantage
to ease the difficulties faced in the production of
identical photons. Indeed, photons of approximately equal
colors (Δω ≫ jωs − ωs0 j ∀s ≠ s0) are not needed anymore,
unlike in the original approximate boson sampling problem.
This furthermore paves the way towards the use of photons
of arbitrarily small bandwidth Δω, where the indistinguish-
ability in the emission times (1=Δω ≫ jt0s − t0s0 j ∀s; s0) can
be easily achieved.
In conclusion, all these results represent an important

stepping-stone towards a full fundamental understanding of
the complexity of multiphoton interference of photons of
arbitrary spectra in linear optical networks, when the
information about detection times and polarizations is
not ignored. This may lead to “real world” applications
in quantum information processing [52] and in quantum
optics overcoming the experimental challenge in the
production of identical bosons.
Finally, our results can be extended to bosonic inter-

ferometric networks with atoms [12,13,66], plasmons [67],
or mesoscopic many-body systems [68] and are also
relevant to the study of the complexity of multiboson
correlation interference for different input states [2,69,70]
and different correlation measurements [71].
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