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A pair of conjugate observables, such as the quadrature amplitudes of harmonic motion, have
fundamental fluctuations that are bound by the Heisenberg uncertainty relation. However, in a squeezed
quantum state, fluctuations of a quantity can be reduced below the standard quantum limit, at the cost of
increased fluctuations of the conjugate variable. Here we prepare a nearly macroscopic moving body,
realized as a micromechanical resonator, in a squeezed quantum state. We obtain squeezing of one
quadrature amplitude 1.1� 0.4 dB below the standard quantum limit, thus achieving a long-standing goal
of obtaining motional squeezing in a macroscopic object.
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The motion xðtÞ ¼ X1ðtÞ cosðωmtÞ þ X2ðtÞ sinðωmtÞ of
a harmonic oscillator having the natural oscillating fre-
quency ωm can be described by the quadrature amplitudes
X1 and X2 which have slow fluctuations. The fluctuations,
presented in units of the quantum zero-point fluctuation
amplitude xzp, satisfy the Heisenberg uncertainty relation
ΔX1ΔX2 ≥ 1. One of the two can be prepared
(¼ squeezed) below the value 1, at the expense of increased
fluctuations in the other quadrature. In optics, squeezing of
laser light was observed in early 1980s [1,2], not long after
the possibility was realized.
It has been a formidable challenge to obtain squeezing in

the motional state of a macroscopic object. The possibility
of squeezing in the oscillations of massive gravitational
antennae was hypothesized a long time ago [3,4], but
technological limitations are too severe for experimental
realization. Other motional quantum-mechanical phenom-
ena, on the other hand, have recently been experimentally
demonstrated [5,6] in micromechanical resonators. The
latter systems are nearly macroscopic in physical size, and
therefore they provide an ideal test system for treating the
borderline between quantum and classical. Of particular
interest for these studies has been the cavity optomechanics
setting coupling electromagnetic cavity mode and the
oscillator motion [7]. Output of squeezed light [8–10]
was recently observed, but this does not yet imply that the
oscillator mode is squeezed.
Here we report the first realization of squeezing of the

motional state of a nearly macroscopic body, realized as a
micromechanical resonator measuring 15 microns in
diameter. We utilize the novel idea of dissipative squeezing
[11–13] [see Fig. 1(a)], where the system is allowed to
cool towards a squeezed low-energy state. This method has
the great advantage of being able to create unconditional
squeezing in the steady state. This is in contrast with
many other plausible methods of squeezing generation
[14–20]. Our approach is closely related to the quantum

nondemolition measurements [21–23] which, however, are
not able to generate true squeezing without feedback. At
this point we mention that classical squeezing of thermal
noise is routinely observed in mechanical systems [24–26].
The mechanical element [Fig. 1(b)] is a drum resonator

basically similar to Refs. [27,28]. The 120-nm-thick Al
drum fabricated on a quartz substrate is connected through
a narrow 70-nm vacuum gap to one end of the cavity. The
latter consists [Fig. 1(c)] of a meandering superconducting
Al strip. This kind of microwave optomechanical system is
conveniently described using a model involving lumped
electromagnetic elements. The interaction between the
microwave cavity and the mechanical vibrations is given
by the energy g0nPx, where nP is the number of photons
externally applied by microwave pump(s), and g0 is the
radiation-pressure coupling energy. Because usually g0 is
much smaller than other energy scales, a large nP ≫ 1 is
needed to effectively enhance the interaction up to a
value G ¼ g0

ffiffiffiffiffiffi

nP
p

. If the pump is applied at the frequency
ω− ¼ ωc − ωm (the red sideband), the physics leads to
sideband cooling of the mechanical vibrations, possibly
down to the quantum ground state [28,29].
The scheme of Ref. [11] requires two pump microwaves,

one applied at the red sideband and the other at the blue
sideband frequency ωþ ¼ ωc þ ωm [Fig. 1(d)]. The two
pertinent effective couplings are called G− and Gþ, respec-
tively. This setup can be described as sideband cooling of a
Bogoliubov (BG) mode [11,30], which in the laboratory
frame corresponds to cooling the mechanical mode towards
a squeezed vacuum state. The BG mode is defined by the
annihilation operator β≡ b cosh rþ b† sinh r, obtained
from the creation and annihilation operators b†, b of the
mechanical resonator. An arbitrary squeezing ratio r can
be selected by tuning the ratio of the two pumps:
tanh r ¼ Gþ=G−. The BGmode–cavity system is described
by the Hamiltonian H ¼ Gβða†β þ aβ†Þ with the coupling

energy Gβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
− −G2þ

p

. Here, a†, a are the creation and
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annihilation operators of the cavity. Although a value
G−=Gþ ≳ 1 would give rise to a high squeezing ratio, the
effective coupling needed for cooling this mode would
vanish. Hence, an optimum value is typically around
G−=Gþ ∼ 1.5.
The measurements are carried out inside a Bluefors

dry dilution refrigerator in the temperature interval
7 mK…200 mK. The cavity is first characterized having
the frequency ωc=2π ≃ 6.9004 GHz and coupled to the
transmission lines with the decay rates κEi=2π≃
50� 5 kHz, κEo=2π ≃ 270� 30 kHz through the input
and output ports, respectively. The internal losses are
characterized by the rate κI=2π ≃ 330� 40 kHz, and
the total cavity damping rate is κ ¼ κEi þ κEo þ κI≃
ð2πÞ × 650� 10 kHz. We operate in the good cavity
limit ωm=κ ≃ 20 ≫ 1, a prerequisite for efficient sideband
cooling and squeezing generation.
The mechanical resonator is first characterized using a

single pump tone at the red sideband. We choose very low
pump powers such that the cavity backaction damping rate
γ− ¼ 4G2

−=κ is much smaller than the intrinsic linewidth γm
of the mechanics. The emission at the cavity frequency then
shows the usual thermal motion peak at the motional
sideband at a frequency ωm=2π ≃ 13.032 MHz above
the pump. We obtain γm=2π ≃ 330 Hz corresponding to
the Q value Qm ≃ 3.9 × 104 from the data as in Fig. 1(e)
(γ− ∼ 12 Hz was subtracted from the fit result).
An important benchmarking for cavity optomechanical

experiments is how well the mechanical mode thermalizes
to the temperature T of the refrigerator. Here, we observe
the linear temperature dependence expected [as seen in
Fig. 2(a)] in equilibrium, kBT ¼ nTmℏωm down to≃25 mK.
Here, nTm is the equilibrium thermal phonon number defined
accordingly. In what follows, we operate at the minimum T

where we know that the mechanical mode is at 25 mK
corresponding to nTm ≃ 40 at low pump powers.
We proceed with a series of further calibrations on the

way towards demonstrating squeezing. Next, we perform a
regular sideband cooling experiment (Gþ ¼ 0) (see, e.g.,
Refs. [31–35]). For calibrating G− versus generator power,
we study the peak width γm þ γ− as a function of power at
modest values of G− ≪ κ. The most critical step, which
also will account for most of the final imprecision, is to
calibrate the system gain at the detection side. Each
sideband cooling spectrum (about 20 curves at different
power) are simultaneously fitted to theory with the same
gain, using the G− and nTm just calibrated. For details, see
Ref. [30]. We show examples of the sideband cooling
spectra by the black symbols in Figs. 2(b)–2(e), overlaid
with theoretical predictions from the standard formalism
using input-output theory [30]. For the plot, we have
subtracted a large background level due to the amplifier
noise, hence displaying only the signal part due to the
sample. We also find that the mechanical mode cools down
to a thermal occupation nm ≃ 0.38 (nm ¼ 0 corresponds
here to the ground state). The double peak seen in Fig. 2(e)
signifies the onset of the strong-coupling regime when
G− ∼ κ. The data are plotted in dimensionless units
(quanta), which are the natural units from the theory point
of view (W=Hz units are obtained by multiplying by ℏωc).
Given that we can cool the drum motion close to the

ground state provides a promising starting point for
creating squeezed motional states. We switch on the blue
pump while keeping the red on, obeying G− > Gþ for
stability. This creates a certain BG mode depending on the
ratio G−=Gþ. In order to ascertain which BG mode we
have, we calibrate the input line attenuations separately for
both pump generators. We select γ� ¼ 4G2

�=κ ≪ γm and

(a) (b) (c) (d)

(e)

FIG. 1 (color online). Setup of the microwave optomechanical squeezing experiment. (a) Idea of dissipative squeezing. The initial
fluctuation amplitudes of the quadratures are marked with dashed lines, and the final ones with solid lines. The gray circles denote the
quantum ground state. In sideband cooling (left), the initial fluctuations uniformly cool towards the ground state. In a suitably
engineered system (right), cooling can be quadrature dependent, hence leading to one quadrature becoming squeezed. (b, c) Optical
micrographs of the micromechanical device and of the cavity. There are two drum resonators connected to the cavity; however, only one
of them (within the dashed rectangle) operates. The cavity is asymmetrically coupled to the input port (left) and to the output port (right)
for transmission measurements. (d) The frequencies involved in the scheme. The cavity is pumped by two nonequal-amplitude
microwave tones at the sideband frequencies ω� ¼ ωc � ωm. (e) Example of the thermal motion signal measured at the refrigerator base
temperature, with the coupling G−=2π ≃ 1.3 kHz.
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adjust the powers such that we obtain equal response due to
either pump. The imprecision is estimated to be �0.2 dB
which is also the imprecision for constructing a given
BG mode.
Next we discuss a specific BG mode obeying

G−=Gþ ≃ 1.52, which is expected to represent a choice
close to optimum. At the lowest pump powers, the back-
action cooling is negligible, and we reveal the bare BG
mode undressed from the cavity. Under this condition, the
equilibrium BG mode occupancy nTBG is expected to follow
a linear temperature dependence in the same way as the
mechanical mode, but with an elevated temperature [30].
More relevant than nTBG, however, is the agreement of the
spectra with the theoretical prediction, which is connected
here to the area under the Lorentzian BG mode peak. We
test this in Fig. 2(a) and observe an excellent agreement
with the theory. The green solid line is an expectation based
on the calibrated G−=Gþ ratio and on the Gþ ¼ 0 data.

Next, we increase the effective couplings. In order to
mitigate possible gain drifts, we repeat a sequence of short
measurements of the amplifier noise background, sideband
cooling, and BG data. Plotted in conjunction with the
sideband cooling data, in Figs. 2(b)–2(e) we display the BG
mode spectra in green. The theoretical plots show a good
agreement with the data. In Fig. 2(e), the BG mode curve is
slightly shifted to the left, probably because of an energy-
dependent shift in the cavity frequency. When using fixed
pump frequencies as we do here, the cavity can become
slightly detuned at certain pump powers. Here, we have
used as adjustable parameters the bath temperatures of both
the cavity and the mechanics. Both baths heat up with the
pump powers, for the BG mode up to nI ≃ 0.74, nTm ≃ 86
(instead of nTBG, we prefer to quantify the bath with nTm)
in Fig. 2(e), which is attributed to dielectric heating. These
factors together set the limits for the cooling as well as
squeezing. As one can anticipate, the baths heat up more if
we apply both pumps instead of only one.
In Figs. 2(b)–2(e) we label the fitted values of the BG

mode occupation nBG, which is a quantity analogous to nm
in the case of regular sideband cooling. Although nBG does
not directly correspond to a physical temperature, a value
nBG < 1 as obtained in Fig. 2(e) is indicative of squeezing.
We can more precisely infer the amount of squeezing by
evaluating the quadrature variances [30]. This way, we
obtain that the mechanical mode is squeezed below the
vacuum level, i.e., in Fig. 2(e) by ≃1.1 dB.
The best verification of squeezing comes from the

quadrature spectra which amount to tomography of the
state. We digitally mix down the signal using the center
frequency ωc of the pumps as a local oscillator (LO), hence
making homodyne detection. The quadrature spectra show
strong dependence on the LO phase. We identify the
minimum emission as the X1 quadrature and the maximum,
offset by 90°, as X2. In Fig. 3, we show the corresponding
quadrature spectra S1 and S2 together with the total
spectrum (the BG mode) and the cooling spectrum. We
plot the quantities 2S1 and 2S2 for more conveniently
presenting them together with the other two curves. The
theoretical predictions overlaid on the data show an
excellent agreement. In the best case of Fig. 3(d), the
motion of the mechanical resonator has been squeezed
about 1.1 dB below the Heisenberg limit. When varying
the LO phase, we also observe an excellent agreement to
theory (Fig. 4). The bath temperatures are found to be
slightly enhanced over the previous data set in Fig. 2 [30].
We also find that these data agree with a slightly shifted
BG ratio G−=Gþ ≃ 1.43 which is attributed to drift, not
directly measured, in the tunable filters at room temperature
over about one week after the calibration.
We now discuss an issue that is critical for understanding

the quadrature spectra, namely, parametric effects beyond the
ideal optomechanical model. One can satisfactorily model
the total BG mode spectrum (and get equal squeezing)

(a)

(b)

(c)

(d)

(e)

FIG. 2 (color online). Cooling the Bogoliubov mode. In all the
panels, black refers to regular sideband cooling (i.e., Gþ ¼ 0)
used as calibration, whereas green refers to the BG mode
experiment. (a) Thermalization in equilibrium. The left scale
gives nTm, as well as the area of both the sideband cooling peaks,
and of the BG mode peaks (both in a.u.), whereas the right-hand
side scale is nTBG. (b–e) Output spectrum during sideband cooling
(black) or under BG mode conditions (green). The solid lines are
theoretical curves. The nm values refer to the Gþ ¼ 0 case.
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without imposing any parametric modulation [30]; however,
the quadratures show much more phase dependence than
predicted. In the scheme, mixing products of the pumps
can appear both at 2ωm and 2ωc, the frequencies most
susceptible to causingparametricmodulationvia e.g. thermal
effects or nonlinearities [22,30]. Modulation of ωc out of
phase with respect to the pumps gives an excellent match to
the quadratures with the values quoted in Fig. 3. In order to
verify the existence of this parametric effect, we carried out a
measurement where we substantially detuned both pumps
from the sideband resonance, by∼� 6κ, such that the center
frequency stays at ωc [30]. This high detuning essentially
eliminates optomechanical phenomena, but a possible field
at 2ωc remains. Thus,wemeasure a spectrum consistentwith
a parametrically modulated oscillator with the correct phase.
A possible explanation is nonlinear dissipation in the cavity
[36] or a thermal effect. Although the parametric effects
have a dramatic influence on the quadratures of the output
spectrum, they only weakly affect the squeezing of the
mechanics; in the present case, we find a reduction by
about 10%.
For the error analysis, we use a worst-case scenario of

systematic errors from the calibrated parameters, and of
direct statistical errors of the adjustable parameters. We find
that the gain uncertainty is dominating. Because the shapes
of the spectra are sensitive to most parameters, but
squeezing is somewhat insensitive to any parameters in

(a) (b)

(c) (d)

FIG. 3 (color online). Squeezing inferred from the quadrature spectra. In all panels, blue and red refer to the cold and hot quadratures
X1 and X2, respectively. Black and green refer to the regular sideband cooling and the BG mode, respectively. The solid lines are theory
curves. The pump powers are increased from (a) to (d) as marked in the panels, while the G−=Gþ ≃ 1.43 ratio is kept constant. The
variances ΔX2

1 are marked, and a value less than 1 implies squeezing below vacuum. The amplitudes of parametric modulation to the
cavity are ϵc=2π ≃ 35, 48, 49, 56 kHz from (a) to (d).

(a)

(b)

FIG. 4 (color online). Tomography and final results. (a) The
quadrature data similar to Fig. 3(d), plotted at different LO phase
values at π=10 steps from 0 to π=2, from bottom to top. (b) The
X1 quadrature variance as a function of pump power. The blue
region signifies squeezing below the quantum limit. The inset
shows the quadrature variance from the data in (a).
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the present parameter region, we obtain a relatively small
imprecision of ∼10%. The final numbers are quoted in
Fig. 4(b).
In conclusion, we have achieved the reduction of the

quantum fluctuations in a nearly macroscopic moving
object below the “sound of silence” level by 1.1 dB in
one quadrature. Following the discoveries of ground-state
cooling [5,28,29], observation of zero-point fluctuations
in mechanical systems [37], and entanglement [6], our
work further establishes the reality of another fundamental
quantum property in moving objects.
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Note added.—Recently, we became aware of a similar
experiment [38].
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