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We show that the external control of Fano resonances in general leads to complex Fano q parameters.
Fano line shapes of photoelectron and transient absorption spectra in the presence of an infrared control
field are investigated. Computed transient absorption spectra are compared with a model proposed for a
recent experiment [C. Ott et al., Science 340, 716 (2013)]. Control mechanisms for photoelectron spectra
are exposed: control pulses applied during excitation modify the line shapes by momentum boosts of
the continuum electrons. Pulses arriving after excitation generate interference fringes due to infrared
two-photon transitions.
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The celebrated Fano formula [1]

σðΔEÞ ¼ σ0
jqΓþ 2ΔEj2
Γ2 þ ð2ΔEÞ2 ð1Þ

describes the modulation of the cross section of any
excitation process to a continuum that is structured by a
single embedded resonant state compared to the smooth
background cross section σ0 in the absence of the
embedded state. Apart from the resonance width Γ and
the detuning ΔE there appears the q parameter, which
produces a characteristic asymmetry and—if it is real—an
exact zero of the cross section. The Fano profile is one of
the prominent manifestations of quantum mechanical
interference in scattering. The mechanism is ubiquitous
and independent of the particular nature of the transitions
involved. In recent years it was proposed to control the line
shape by external fields and interactions, and schemes in
diverse fields of physics were experimentally realized (see
the review in Ref. [2]). For a quantum dot system controlled
by a time-independent magnetic field it was observed that a
generalization to complex q was required to fit the control
dependence of the line shape. Complex values of q result
from the breaking of time-reversal symmetry by the
magnetic field [3]. In contrast, in the standard Fano theory
[1], applicable to time-reversal symmetric systems, q is real
valued (see, e.g., Ref. [4]). A complex q has also been
discussed as a signature of dephasing and decoherence in
atoms [5,6] as well as in quantum dots [7] and microwave
cavities [8]. More generally, a complex q is expected to
appear whenever coupling to the environment or external
fields turns the embedded state into a state that cannot be
described by a real-valued eigenfunction.
In this Letter we show that also a time-dependent electric

control field, specifically an infrared (IR) probe pulse,

generates complex q parameters. Recently, the control of
the line shape of transient absorption spectra (TAS) arising
in a pump-probe scenario for helium was demonstrated [9]:
the excitation of the 2snp series of doubly excited states by
a short extreme ultraviolet (XUV) pulse was probed by a
weak, time-delayed near-IR pulse. The modulation of TAS
line shapes was described as a control of the Fano q
parameter through an IR induced phase shift. Here, we
present ab initio numerical solutions that show that TAS as
well as photoelectron spectra (PES) can be characterized by
complex rather than real q. For PES we expose the two
main mechanisms underlying the appearance of a nonzero
imaginary part of q using a generalized Fano model that
includes an external control. First, we show that the phase
shift discussed in Ref. [9] directly leads to complex q in
PES. However, a second mechanism dominates the PES
line shapes when XUV and IR pulses overlap: the free
electron momenta are boosted by

~k → ~kþ ~Aðt0Þ; ~Aðt0Þ≔−
Z

t1

t0

dτ~EðτÞ; ð2Þ

from their values after an XUV excitation time t0 until the

end of the IR field ~EðtÞ at time t1. (Unless indicated
otherwise, we use atomic units, where the electron mass,
proton charge, and ℏ are all set equal to 1.) The boost
redistributes amplitudes among the partial waves and
modifies the Fano interference of the embedded state with
the continuum in the l ¼ 1 decay channel. Both mecha-
nisms conserve the universal Fano line shape (1), albeit
with complex q.
A higher order process that leads to a departure from

the Fano profile is two-IR-photon coupling, which was
discussed for a multiplet of embedded states [10] and for
Autler-Townes splitting [11]. In the present setting,
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two-IR-photon coupling generates characteristic interfer-
encelike modulations of the PES when the XUV and IR
pulses are well separated in time. Similar structures will
appear when the decaying state is partially depleted by a
delayed IR pulse [12]. The importance of nonresonant IR
multiphoton processes in the excitation of dipole-forbidden
autoionizing states was noted recently [13].
We first present the PES in the vicinity of the Heð2s2pÞ

line as a function of the XUVexcitation time t0 with an IR
pulse centered at t ¼ 0 (Fig. 1). The results were obtained
by numerically solving the time-dependent Schrödinger
equation of the He atom in full 3þ 3 spatial dimensions.
Spectra were computed using the time-dependent surface
flux method [14,15]. For a summary of the computational
approach and a discussion of its accuracy, see Ref. [16].
The XUV center wavelength of λ ¼ 21 nm was chosen to
match the excitation to the 2s2p state, but the spectral
width of ∼10 eV at the pulse duration of 0.15 fs evenly
covers the entire 2snp series of doubly excited He states.
The calculations were performed for an IR wavelength of
800 nm with a pulse duration of 2 optical cycles, a peak
intensity of 2 × 1012 W=cm2, and parallel linear polariza-
tion of the XUV and IR pulses.
The two lineouts (Fig. 2) pertain to t0 ¼ −3=4 andþ1=2

(in units of the IR optical cycle). At t0 ¼ −3=4, where the
XUV pulse coincides with a node of the IR electric field,
one sees a strongly asymmetric Fano profile. In contrast, at
t0 ¼ þ1=2, at the peak of the IR field, the profile is
Lorentz-like. Neither the width nor the position of the
resonance is affected by the weak IR. The pattern is
repeated as t0 is scanned through the IR pulse.
Figure 2 also contains fits to the lines by Eq. (1), where Γ

was taken from the IR-free case. Only the overall intensity
σ0 and the q parameter were adjusted, either restricting q to
real values and or admitting complex q, respectively. When
the XUV pulse coincides with a node of the IR pulse (right

panel of Fig. 2), only the fit with complex q is satisfactory:
there is no exact zero in the spectrumwhen the IR and XUV
pulse overlap, which trivially rules out an accurate fit by
Eq. (1) with real q.
For the example of PES we show how a complex q arises

in the framework of a generalized Fano theory. A standard
Fano Hamiltonian has the form

H ¼ jφiEφhφj þ
Z

j~ki k
2

2
h~kj þ j~kiV~khφj þ jφiV�

~k
h~kjd3k;

ð3Þ

where the embedded bound state jφi interacts with the

continuum states j~ki through V~k ¼ h~kjVjφi. Solutions are
known for the exact scattering eigenfunctions jξ~ki, the
resonance width Γ, and the shift of the resonance position
from the noninteracting Eφ. The Fano transition amplitude
hξ~kjTjϕ0i for an arbitrary transition operator T from some
initial state jϕ0i leads to the Fano cross section (1). We
introduce the wave packet after the transition

Tjϕ0i ¼ ∶jψ0i ¼ jφiXφ þ
Z

d3kj~kiX~k ð4Þ

with the transition amplitudes from the initial state Xφ ¼
hφjTjϕ0i and X~k ¼ h~kjTjϕ0i. For notational simplicity we
consider the case where jφi decays into a well-defined
angular momentum state; in the case of the 2s2p doubly
excited state this is the l ¼ 1 partial wave. The q parameter
for the standard Fano Hamiltonian (3), denoted as q0, is

q0 ¼
1

πV�
kk

hφjψ0i þ P
R
k02dk0

2V�
k0

k2−k02 hk0jψ0i
hkjψ0i

; ð5Þ

where jki denotes the l ¼ 1 partial wave continuum state

with k ¼
ffiffiffiffiffi
~k2

p
, and Vk are the coupling matrix elements

between embedded and continuum states. When the hk0jψ0i
and hφjψ0i all share the same phase, q is real.

FIG. 1 (color online). PES σðΔEÞ in the vicinity of the 2s2p
resonance as a function of the XUV excitation time t0 (l ¼ 1

partial wave). The IR peak intensity is 2 × 1012 W=cm2. The
solid line represents the IR field and the curved fine-dashed lines,
corresponding to 2nπℏ=jt0j; n ¼ 1; 2; 3, closely follow the inter-
ference maxima. A negative t0 corresponds to the XUV pulse
preceding the IR pulse. The dashed vertical lines indicate the
lineout times of Fig. 2.

FIG. 2 (color online). PES at two different delay times as
indicated in Fig. 1. Left: t0 ¼ 1=2 IR optical cycle, near a field
peak. Right: t0 ¼ −3=4, near a field node. The IR peak intensity
is 1012 W=cm2. Solid line, numerical result; dashed line, fit
admitting complex q; dot-dashed line, fit with q restricted to real.
All three lines nearly coincide at t0 ¼ 1=2.
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In our model for the transition in the pulse overlap region
we assume that the initial state jϕ0i is unaffected by the IR
pulse and that the effect on the embedded state jφi is only a
Stark shift ΔEφðtÞ relative to the field-free energy Eφ. The
interaction of the IR pulse with the continuum states is
described in the standard “strong field approximation” [17]:
when the IR field prevails over the atomic potential, the
continuum states at time t can be approximated as plane

waves with wave vector ~k − ~AðtÞ and the phase of the time
evolution is modified accordingly. Finally, we assume that
the IR pulse duration is short compared to the decay time of
the embedded state. With that, the net effect of the IR pulse
is to replace jψ0i by a modified initial wave packet

jψ1i ¼ jφiXφ þ
Z

d3ke−iΦ~k j~kiX~k−~Aðt0Þ ð6Þ

(see the Supplemental Material [18]). The phase offset
Φ~k between embedded and continuum states accumulated
from excitation at t0 until the end of the IR pulse at t1,
~Aðt1Þ ¼ 0, is

Φ~k ¼
Z

t1

t0

dτð½~k − ~AðτÞ�2=2 − Eφ − ΔEφðτÞÞ: ð7Þ

Clearly, even if the initial amplitudes Xφ and X~k−~Aðt0Þ are all
real, the interaction with the IR pulse imprints a phase
modulation on jψ1i. Such an energy-dependent phase
imprint on the initial wave packet jψ1i is generic for
short-time controls. After the end of the control pulse the
evolution is governed by the Fano Hamiltonian (3), but the
matrix elements hφjψ0i and hkjψ0i in Eq. (5) are replaced
with hφjψ1i and hkjψ1i, which no longer share the same
phase. As a result the modulated q1 becomes complex.
For photoelectron spectra, in X~k−~Aðt0Þ in addition the

partial waves are redistributed compared to the IR-free X~k

by the addition of a streaking momentum ~Aðt0Þ. A short
calculation (see Ref. [18]) leads to the IR modification of
the Fano parameter

q1 ¼ q0 þ aðe−iχ=J − 1Þ; ð8Þ

where a ¼ hφjψ0i=ðπV�
kkhkjψ0iÞ denotes the ratio of

embedded to continuum amplitudes without the IR pulse
and

χ ¼
Z

t1

t0

dτ½ΔEφðτÞ − ~A2ðτÞ=2� ð9Þ

is a laser-induced phase shift between the two components.
Although the phase shift χ does give a numerically
discernable contribution, the t0 dependence of q1 is
dominated by

J ¼ j0ðj~αjkÞ − 2j2ðj~αjkÞ − 3i
j1ðj~αjkÞ
j~αjk ~α · ~Aðt0Þ; ð10Þ

where the spatial offset of a free electron by the IR pulse

~α ¼
Z

t1

t0

dτ~AðτÞ ð11Þ

appears in the argument of the spherical Bessel functions jl.

The J term accounts for streaking by the term
R t1
t0
~k ·

~AðτÞdτ in Φ~k. By the dipole selection rule jψ0i has angular
momentum l ¼ 1 and therefore only the j0, j1, and j2
contribute to the l ¼ 1 partial wave emission.
In Fig. 3 we compare Eq. (8) with fits to the numerically

computed 2s2p line. For the fits, the amplitude ratio was
kept constant at the field-free value of a ¼ −3.3 and Stark
shifts were neglected, ΔEφ ≡ 0. Sign changes of the real
part and peaks in the imaginary parts are all well repro-
duced. Quantitative deviations must be expected in the
strong field approximation, due to the use of plane waves

j~ki instead of the exact scattering solutions. In addition,
there is a non-negligible IR two-photon coupling, as will be
discussed below.
There are excitation times t0 ¼ tn where the spatial offset

vanishes, ~α ¼ 0, and therefore J ¼ 1. At these delays, the
imaginary part of q1 is exclusively due to the phase shift χ.
Up to small corrections arising from the short IR pulse
duration, the tn coincide with zeros of the field. At the tn the
profile is Fano-like (Fig. 2), except that the characteristic
minimum remains slightly above zero. In our model,
the minima for subsequent tn’s grow monotonically as
the delay jt0j increases (Fig. 3, right panel) reflecting the
accumulation of the shift χ (9). For overlapping pulses, all
resonances 2snp, n ¼ 2 through 7, show the same delay
dependence, which corroborates that line shape modula-
tions are dominated by the dressing of the continuum.
When the XUV pulse precedes the IR pulse without

overlap (large negative t0), the spatial offset goes to zero
(~α ≈ 0) and therefore J ≈ 1. Here, the line shapes are the

FIG. 3 (color online). Dependence of q1 on the XUV-IR delay
time t0 according to Eq. (8) (dashed lines) and from fits to
numerical results (solid lines). (a) ℜðq1Þ. (b) jℑðq1Þj. (c) jℑðq1Þj
at times tn near the nodes of the field (~α ¼ 0, see text) for Eq. (8)
(bullets) and the fit (squares).
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combined effect of the phase shift χ and IR two-photon
coupling between embedded and continuum states. Two-
photon coupling is not included in the standard Fano model
(3). It manifests itself in sidebandlike interferences.
Stimulated two-IR-photon emission creates ripples in the
otherwise smooth nonresonant PES to the left of Eφ around
El ¼ Eφ − 2ω, where ω is the IR photon energy. The
electron amplitude generated by two-photon absorption
near Er ¼ Eφ þ 2ω is superimposed with the higher-lying
Fano resonances and therefore is not clearly discernable.
Absorption-emission transitions couple the embedded state
to the continuum near E ¼ Eφ. We model the spectral
features near Eβ, β ¼ φ; l by

σðEÞ ¼ jfðEÞ þ E2
0e

−it0ðE−EβÞbβðEÞj2; ð12Þ

where t0 is the XUV-IR delay, E0 denotes the IR peak field
strength, and fðEÞ is the spectral amplitude in the absence
of the IR pulse. The unknown two-IR-photon transition
amplitudes are parametrized as bβðEÞ ¼ cβgðE − EβÞ. For
g we use a Gaussian profile with a fixed width equal to the
spectral width of the IR pulse. The only adjustable
parameters are the two-photon coupling strengths cβ,
accounting for the different strengths of the transition into
a structured and unstructured continuum.
In Fig. 4 the cross section (12) at t0 ¼ −12 IR optical

cycles is compared to the time-dependent Schrödinger
equation result. The fringe separation of 2π=t0 discernable
in Figs. 1 and 4 proves that the structures are caused by the
interference of photoelectrons emitted at the relative delay
t0. Without any further adjustment of cβ or g the model
equally well reproduces the spectra for varying intensities
up to I ≲ 1012 W=cm2 and for all t0. The quadratic
dependence on the IR field strength E0 shows that this is
a true two-photon process without resonant coupling to
neighboring states. At short time delays t0 the effect is
negligible, as fringe separation diverges and fringes are
hardly discernable.

Turning to the complementary channels for observing
Fano line shape control by the IR field we calculated TAS
near the 2snp, n ≤ 6, states using the pulse parameters of
Ref. [9]. The spectra were determined from the full
solutions of the time-dependent Schrödinger equation
following the method described in Ref. [19].
The delay dependence of the TAS differs from that of the

PES: under the influence of the IR field the characteristic
minimum of the Fano line all but disappears and does not
fully reappear for delays shorter than the resonance life-
time. Figure 5 shows as an example the computed transient
absorption line of the n ¼ 4 resonance at different IR
delays. In all cases, the numerical results are accurately
fitted using the field-free line parameters and adjusting
complex q. A theoretical description of the TAS line shapes
was given in Ref. [9], where the line is composed of a Fano
profile with a modified real qm and a pedestal that is fully
determined by qm (see the supplemental materials and
Fig. S1 of Ref. [9]). Figure 5 includes the lines following
the model of Ref. [9], where we use the values of qm
resulting from the main text, Eqs. (4b), (22), and (24), and
the supplemental materials of Ref. [9]. The line shapes are
qualitatively correct, but the predicted peaks are too high by
≈10% in Fig. 5(b) and ≈30% in Fig. 5(c). This discrepancy
is inherent in the line shape given in Ref. [9] and cannot be
eliminated by choosing different qm. For an accurate
reproduction of the simulated line shape, one must intro-
duce more parameters, for example, an independent fit of
the pedestal, or, as above, an imaginary part of q.
The modifications of the Fano profiles appear at param-

eters that are accessible by experimental setups as in
Ref. [9]. For PES we predict the line shape (8). For
TAS a local cross section minimum above zero provides
support for the appearance of complex q or, in an alter-
native parametrization, real qm with a pedestal. The main
experimental difficulty is the proper background subtrac-
tion. In the case of the PES, the presence of the IR pulse

FIG. 4 (color online). Two-photon interference resonance in the
l ¼ 1 partial wave near Eφ (upper panel) and near Eφ − 2ω (lower
panel). The cross section (12) (dot-dashed line) is compared to
the full numerical result (solid line) at t0 ¼ −12 optical cycles.

FIG. 5 (color online). TAS at the 2s4p resonance. Results are
shown for (a) the XUV pulse only, (b) a 7 fs FWHM IR pulse with
peak intensity I ¼ 2 × 1012 W=cm2 reached at arrival of the
XUV pulse, and (c) the peak IR intensity 5 fs after the XUV
pulse. Dots: numerical results. Red solid line: fit of a Fano profile
with complex q. Blue dashed line: line shape of Ref. [9]. The
lines trivially coincide in (a).
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introduces a smooth background of partial waves, Eq. (2),
in addition to the l ¼ 1 partial wave that exhibits the Fano
interference. However, at the times tn where ~α ¼ 0 the
contributions from the other partial waves are negligible
and ℑðqÞ as given in the right panel in Fig. 3 is directly
observable in the angle-integrated cross section. At other
delays, the l ¼ 1 cross section must be reconstructed from
an angle-resolved measurement (see, e.g., Ref. [20]).
In summary, anomalous Fano profiles with a complex q

parameter appear whenever a nontrivial relative phase
between the embedded state and the continuum is
imprinted on the system during the Fano decay. Such a
phase can reflect the internal dynamics of the embedded
state jφi, i.e., when it is not strictly an eigenstate of a
stationary Hamiltonian, as for decaying states and
decoherence. It can equally be generated by an external
control, as demonstrated here. Our theoretical description
of the process should be generalizable to systems where we
can model the impact of the control on bound and
embedded states and when the control time is short
compared to the resonance lifetime. This is the case for
laser pulses on atoms or molecules, but the approach is also
valid, e.g., for time-dependent electric or magnetic fields
acting on quantum dots.
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