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Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-
Goldstone modes with a higher-order low-energy dispersion ω ∼ kn (n ¼ 2; 3;…), whose naturalness is
protected by polynomial shift symmetries. Here, we investigate the role of infrared divergences and
the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find
novel cascading phenomena with large hierarchies between the scales at which the value of n changes,
leading to an evasion of the “no-go” consequences of the relativistic CHMW theorem.
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Some of the most pressing questions about the funda-
mental laws of the Universe (such as the cosmological
constant problem or the hierarchy between the Higgs mass
and the Planck scale) can be viewed as puzzles of technical
naturalness [1]. In this Letter, we study the interplay of
technical naturalness with spontaneous symmetry breaking
(SSB) in nonrelativistic systems.
SSB is ubiquitous in nature. For relativistic systems

and global continuous internal symmetries, the universal
features of SSB are controlled by the Goldstone theorem.
Much progress in SSB has also been achieved in the
nonrelativistic cases, where the reduced spacetime sym-
metries allow a much richer behavior, still very much the
subject of active research (see, e.g., Refs. [2–8] and the
references therein). Important novelties emerge already
in the simplest case of theories in the flat nonrelativistic
spacetimeRDþ1 [covered with Cartesian coordinates ðt;xÞ,
x≡ ðxi; i ¼ 1;…; DÞ] and with the Lifshitz symmetries of
spatial rotations and spacetime translations. In such theo-
ries, the Nambu-Goldstone (NG) modes can be either of
two distinct types: type A, effectively described by a single
real scalar ϕðt;xÞ with a kinetic term quadratic in the
time derivatives; or type B, described by two scalar fields
ϕ1;2ðt;xÞ which have a first-order kinetic term and thus
form a canonical pair.
In Refs. [7,8], we showed that this type A-B dichotomy

is further refined into two discrete families, labeled by a
positive integer n: type An NG modes are described by a
single scalar with dispersion ω ∼ kn (and dynamical critical
exponent z ¼ n), while type B2n modes are described by a
canonical pair and exhibit the dispersion relation ω ∼ k2n

(and dynamical exponent z ¼ 2n). These two families are
technically natural, and therefore stable under renormali-
zation in the presence of interactions [7]. As usual, such
naturalness is explained by a new symmetry. For n ¼ 1,
the NG modes are protected by the well-known constant
shift symmetry δϕðt;xÞ ¼ b. The n > 1 theories enjoy shift

symmetries by a degree-P polynomial in the spatial
coordinates [7]

δϕðt;xÞ ¼ bþ bixi þ � � � þ bi1���iPx
i1 � � � xiP ; ð1Þ

with a suitable P. Away from the type An and B2n Gaussian
fixed points, the polynomial shift symmetry is generally
broken by most interactions. The lowest, least irrelevant
interaction terms invariant under the polynomial shift were
systematically discussed in Ref. [8] (see also Ref. [9]).
Such terms are often highly irrelevant compared to all of the
other possible interactions that break the symmetry.
Having established the existence of the multicritical

type A and B families of NG fixed points, in this Letter
we study the dynamics of flows between such fixed points
in interacting theories. We uncover a host of novel
phenomena involving large, technically natural hierarchies
of scales, protected again by the polynomial shift sym-
metries. As a given theory flows between the short-distance
and the long-distance regime, it can experience a natural
cascade of hierarchies, sampling various values of the
dynamical critical exponent z in the process. Such cascades
represent an intriguing mechanism for evading some of
the consequences of the relativistic Coleman-Hohenberg-
Mermin-Wagner (CHMW) theorem.
Recall that in relativistic systems, all NG bosons are of

type A1, assuming that they exist as well-defined quantum
objects. Whether or not they exist, and whether or not the
corresponding symmetry can be spontaneously broken,
depends on the spacetime dimension. This phenomenon is
controlled by a celebrated theorem, discovered independ-
ently in condensed matter by Mermin and Wagner [10]
and by Hohenberg [11], and in high-energy physics by
Coleman [12]. We therefore refer to this theorem, in
alphabetical order, as the CHMW theorem.
The relativistic CHMW theorem states that the sponta-

neous breaking of global continuous internal symmetries is
not possible in 1þ 1 spacetime dimensions. The proof is
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beautifully simple. 1þ 1 is the “lower critical dimension,”
where ϕ is formally dimensionless at the Gaussian fixed
point. Quantum mechanically, this means that its propa-
gator is logarithmically divergent, and we must regulate it
by an infrared (IR) regulator μIR:

hϕðxÞϕð0Þi ¼
Z

d2k
ð2πÞ2

eik·x

k2 þ μ2IR

≈ −
1

2π
logðμIRjxjÞ þ constþOðμIRjxjÞ: ð2Þ

The asymptotic expansion in Eq. (2), valid for μIRjxj ≪ 1,
shows that as we take μIR → 0, the propagator stays
sensitive at long length scales to the IR regulator. We
can still construct various composite operators from the
derivatives and exponentials of ϕ, with consistent and finite
renormalized correlation functions in the μIR → 0 limit, but
the field ϕ itself does not exist as a quantum object. Since
the candidate NG mode ϕ does not exist, the corresponding
symmetry could never have been broken in the first place,
which concludes the proof.
For nonrelativistic systems with type An NG modes, we

find an intriguing nonrelativistic analog of the CHMW
theorem. The scaling dimension of ϕðt;xÞ at the An
Gaussian fixed point, measured in the units of spatial
momentum, is

½ϕðt;xÞ�An
¼ ðD − nÞ=2: ð3Þ

The type An field ϕ is at its lower critical dimension when
D ¼ n. Its propagator then requires an IR regulator. There
are many ways how to introduce μIR—for example, by
modifying the dispersion relation of ϕ, as in

hϕðt;xÞϕð0Þi ¼
Z

dωdDk
ð2πÞDþ1

eik·x−iωt

ω2 þ jkj2D þ μ2DIR
; ð4Þ

or

hϕðt;xÞϕð0Þi ¼
Z

dωdDk
ð2πÞDþ1

eik·x−iωt

ω2 þ ðjkj2 þ μ2IRÞD
: ð5Þ

Regardless of how μIR is implemented, as we take
μIR → 0, the propagator again behaves logarithmically,
both in space

hϕðt;xÞϕð0Þi ≈ −
1

ð4πÞD=2ΓðD=2Þ logðμIRjxjÞ þ � � � ð6Þ

for jxjD ≫ t and, in time,

hϕðt;xÞϕð0Þi ≈ −
1

ð4πÞD=2DΓðD=2Þ logðμ
D
IRtÞ þ � � � ð7Þ

for jxjD ≪ t. The propagator remains sensitive to the IR
regulator μIR. Consequently, we obtain the nonrelativistic
multicritical CHMW theorem for type A modes:

The propagator of the type An would-be NG mode
ϕðt;xÞ at its lower critical dimension D ¼ n is logarithmi-
cally sensitive to μIR, and therefore ϕðt;xÞ does not exist as
a quantum mechanical object. Consequently, no sponta-
neous symmetry breaking with type An NG modes is
possible in D ¼ n spatial dimensions.
By extension, this invalidates all type An would-be NG

modes with n > D, whose propagator would also be
pathological at long distances.
In contrast, the scaling dimension of the type B2n fields

is [13]

½ϕ1;2ðt;xÞ�B2n
¼ D=2; ð8Þ

and the lower critical dimension is D ¼ 0. Hence, in all
spatial dimensions D > 0, the type B2n NG modes are free
of IR divergences and are well-defined quantum mechan-
ically for all n ¼ 1; 2;…. The nonrelativistic multicritical
CHMW theorem for type B modes then simply states that
the type B2n symmetry breaking is possible in any D > 0
and for any n ¼ 1; 2;….
Whereas in the relativistic case all NG modes must

always be of type A1, in nonrelativistic systems the
existence of the type An and B2n families allows a much
richer dynamical behavior.
For example, with the changing momentum or energy

scales, a given NG mode can change from type An (or B2n)
to type An0 (or B2n0 ), with n ≠ n0, or it could change from
type A to type B. The hierarchies of scales that open up in
this process are naturally protected by the corresponding
polynomial symmetries. One of the simplest cases is the
type An scalar with n > 1, whose polynomial shift sym-
metry of degree P is broken at some momentum scale μ to
the polynomial shift symmetry of degree P − 2, by some
small amount ε ≪ 1. This breaking modifies the dispersion
relation to ω2 ≈ k2n þ ζ2n−1k

2n−2, with ζ2n−1 ≈ εμ2. Here, as
in Ref. [1], we identify μ as the scale of naturalness. At a
hierarchically much smaller scale, μ× ≡ μ

ffiffiffi
ε

p
, the system

exhibits a crossover, from type An above μ× to type An−1
below μ×. The technical naturalness of the large hierarchy
μ× ≪ μ is protected by the restoration of the polynomial
shift symmetry of degree P as ε → 0.
In the special case of n ¼ D, this crossover from type AD

to type AD−1 yields an intriguing mechanism for evading
the naive conclusion of our CHMW theorem. For a large
range of scales close to μ, the would-be NG mode can
exhibit a logarithmic propagator. The hierarchically smaller
scale μ× ≪ μ then serves as a natural IR regulator, allowing
the NG mode to cross over to type AD−1 at very long
distances. Therefore, the mode is well defined as a quantum
mechanical object, despite the large hierarchy across
which it behaves effectively logarithmically.
An interesting refinement of this scenario comes from

breaking the polynomial symmetries hierarchically, in a
sequence of partial breakings, from a higher polynomial
symmetry of degree P to symmetries with degrees P0 < P,
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P00 < P0,…, all the way to constant shift. This gives rise to
a cascading phenomenon, with a hierarchy of crossover
scales μ ≫ μ0 ≫ μ00 ≫ …, separating plateaus governed by
the fixed points with the dynamical exponent taking the
corresponding different integer values. Again, such cascad-
ing hierarchies are technically natural and are protected
by the underlying breaking pattern of the polynomial
symmetries.
Before we illustrate this behavior in a series of examples,

it is worth pointing out one very simple yet important
feature of large hierarchies in nonrelativistic theories.
Consider a theory dominated over some range of scales
by the dispersion relationω ≈ kn, with n > 1. If we open up
a large hierarchy of momentum scales μ ≫ μ0 (say, by N
orders of magnitude), this hierarchy of momentum scales
gets magnified into an even larger hierarchy (by nN orders
of magnitude) in energy scales.
The first model that we use to illustrate the hierarchy

is a relatively well-known system in 2þ 1 dimensions:
the z ¼ 2 Gaussian model of a single Lifshitz scalar field
ϕðt;xÞ, with a derivative four-point self-interaction turned
on [14,15]:

S2 ¼
1

2

Z
dtd2xf _ϕ2 − ð∂2ϕÞ2 − c2∂iϕ∂iϕ − gð∂iϕ∂iϕÞ2g:

This action contains all the marginal and relevant terms
of the z ¼ 2 fixed point consistent with the constant shift
symmetry and the reflection symmetry ϕ → −ϕ. At the
z ¼ 2 Gaussian fixed point, g is classically marginal and
breaks the polynomial shift symmetry of this fixed point
to constant shift. Quantum corrections at one loop turn g
marginally irrelevant [14].
This system allows a natural hierarchy of scales that is

stable under quantum corrections. At the naturalness scale
μ, we can break the polynomial shift symmetry of the z ¼ 2
fixed point to constant shifts by a small amount, ε0 ≪ 1.
This implies g ∼ ε0 and c2 ∼ ε0μ

2, relations which can be
shown to be respected by the loop corrections. In particular,
c2 can stay naturally small, much less than μ2. The dispersion
relation changes from z ¼ 2 close to the high scale μ to
z ¼ 1 around the much lower scale μ1 ≡ μ

ffiffiffiffiffi
ε0

p ≪ μ.
Our next example is a new model, which not only

illustrates the cascading hierarchy with multiple crossovers
but also exhibits additional intriguing renormalization
properties of independent interest.
We start with the Gaussian z ¼ 3 fixed point of a single

scalar Φðt;xÞ in 3þ 1 dimensions, and we turn on
derivative self-interactions and relevant terms as in our
previous example. The free theory is

S3 ¼
1

2

Z
dtd3xf _Φ2 − ζ23ð∂i∂j∂kΦÞð∂i∂j∂kΦÞ

−ζ22ð∂2ΦÞ2 − c2∂iΦ∂iΦg: ð9Þ

At the classical level we can set ζ23 ¼ 1 by the rescaling
of space. The terms on the second line represent relevant
Gaussian deformations away from the z ¼ 3 fixed point.
The spectrum of available self-interaction operators that
are classically marginal or relevant at the z ¼ 3 Gaussian
fixed point is much richer than in our 2þ 1 dimensional
example. We shall again restrict our attention only to the
operators even under Φ → −Φ, and invariant at least under
the constant shift. Up to total derivatives, which we ignore,
there are three independent marginal four-point operators

OðaÞ
4 , a ¼ 1, 2, 3, one marginal six-point operator

O6 ¼ ð∂iΦ∂iΦÞ3, and one relevant four-point operator

W ¼ ð∂iΦ∂iΦÞ2: ð10Þ

Among them, there is one unique operator O invariant
under the linear shift symmetry up to a total derivative:

O
ð11Þ

cf. Fig. 1. This operator is classically marginal.
To construct our model, we start with the free theory S3

and turn on just the unique linear-shift invariant self-
interaction O, with coupling λ. The Feynman rules of this
model involve one four-vertex, which can be simplified
using the momentum conservation k4 ¼ −

P
I¼1;2;3kI to

ð12Þ

Note that in this vertex, each momentum appears quad-
ratically, with no subleading terms. We can write it even
more compactly with the use of the fully antisymmetric
ϵijk tensor: If for any three momenta k, p, q we define
½kpq�≡ ϵijkkipjqk, our vertex becomes simply

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

=O

FIG. 1. Graphical representation of the unique four-point
invariant O of the linear shift symmetry, as an equal-weight
sum of all trees with distinguishable vertices (see Ref. [8]). Each
dot represents one copy of Φ. Each link represents a contracted
pair of derivatives ∂i � � � ∂i acting at the ends of the link.
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−iλ½k1k2k3�2: ð13Þ

This simple vertex structure is intimately related to the
underlying symmetries: When translated into momentum
space, the linear shift symmetry δϕðt;xÞ ¼ bixi þ b
becomes a shift of the Fourier modes ϕðt;kÞ by
bið∂=∂kiÞδðkÞ þ bδðkÞ. Acting with this symmetry on
any of the legs of the vertex produces zero, as the vertex
is purely quadratic in each of the outside momenta.
Quantum properties.—This model has intriguing

renormalization group properties, which are discussed in
detail elsewhere [16]. First, note that λ satisfies a non-
renormalization theorem: Consider the 2N-point function
of Φ, with N > 1, and with external momenta k1;…;k2N .
Any one-particle irreducible diagram will be of the form
ki11 k

j1
1 � � � ki2N2Nkj2N2N × I i1j1���i2Nj2N ðk1;…;k2NÞ. The factor I

has no ultraviolet divergences, and with c2 ≠ 0 or ζ22 ≠ 0

it approaches a finite value at k1 ¼ � � � ¼ k2N ¼ 0.
The special case of N ¼ 2 implies that λ does not get
renormalized at any loop order. Note also that none of the

operators W, O6, or O
ðaÞ
4 that would break the linear shift

symmetry are generated by the loop corrections.
The remarkable nonrenormalization of λ does not imply

that the effective self-interaction strength would be inde-
pendent of scale: There is a nontrivial renormalization of
the two-point function. While the one-loop diagram
is identically zero, the two-loop diagram gives the
generic behavior which persists at higher loops: There is no
wave-function renormalization, no renormalization of c2,
the loop corrections to ζ22 are quadratically divergent,
and those to ζ23 diverge logarithmically [16]. This log
divergence effectively corrects the dynamical exponent
of the ultraviolet fixed point away from the classical
value z ¼ 3. The modified scaling in turn implies that
the theory becomes effectively strongly coupled at some
finite scale μs.
Having understood the quantum corrections, we can now

study cascading hierarchies of symmetry breaking in this
model, and we can confirm their technical naturalness.
At some high scale μ, which will be our naturalness scale
and which we will keep below μs, consider the following
hierarchical breaking of polynomial symmetries: First,
break the P ¼ 4 symmetry of the z ¼ 3 Gaussian fixed
point to the P ¼ 2 symmetry of the z ¼ 2 fixed point by
some small amount ε2 ≪ 1. Then, break P ¼ 2 to P ¼ 1 by
an even smaller amount, ε1 ≪ ε2. This pattern corresponds
to

ζ23 ≈ 1; ζ22 ≈ μ2ε2; c2 ≈ μ4ε1; λ ≈ ε1: ð14Þ

The dispersion relation cascades from z ¼ 3 at high-energy
scales, to z ¼ 2 at intermediate scales, to z ¼ 1 at low
scales [17]. Both the large hierarchies in Eq. (14) and the
cascading behavior of the dispersion relation are respected
by all loop corrections, and therefore are technically

natural. This follows by inspection from the properties
of the quantum corrections discussed above.
So far, we have focused on the cascading mechanism in

the type A case. Type B systems can form their own
hierarchies, in the obvious generalization of the type A
cascades exemplified above. There is no analog of the
lower critical dimension and the CHMW limit on n. Type A
NG modes can also exhibit a flow to type B. This behavior,
albeit not new (see, e.g., Ref. [18]), can be embedded as one
step into the more general technically natural hierarchies of
type A or B, as discussed above. In particular, the crossover
to type B can provide a new IR regulator of the type A
cascade at the lower critical dimension.
We shall illustrate this with the simplest type A1

example, although the full story is, of course, more general.
Consider two would-be type A NG fields, ϕ1;2ðt;xÞ, in the
vicinity of the z ¼ 1 Gaussian fixed point

S1 ¼
1

2

Z
dtdDxf _ϕ2

1 þ _ϕ2
2 − c21ð∂iϕ1Þ2 − c22ð∂iϕ2Þ2g:

For simplicity, we will set c1 ¼ c2 ¼ 1, although this is not
necessary for our argument. Besides the rotations and
translations of the two scalars, note two independent Z2

symmetries—the field reflection R: ðϕ1;ϕ2Þ → ðϕ1;−ϕ2Þ,
and the time reversal T : t → −t, ϕ1;2ðt;xÞ → ϕ1;2ð−t;xÞ.
We can now turn on the type B kinetic term,

S0 ¼ S1 þ Ω
Z

dtdDxðϕ1
_ϕ2 − ϕ2

_ϕ1Þ: ð15Þ

Ω now provides an IR regulator for the propagator. At that
scale, the field reversal R and the time reversal T are
broken to their diagonal subgroup. At energy scales below
Ω, one of the would-be type A NG modes survives and
turns into the type B NG mode, while the other would-be
type A mode develops a gap set by Ω. Note that in 1þ 1
dimensions, the “no-go” consequences of the relativistic
CHMW theorem are again naturally evaded by this
hierarchy: A NG mode exists quantum mechanically, after
all, and symmetry breaking is possible, despite the fact that
above the scale Ω, the two would-be type A modes exhibit
the logarithmic two-point function, suggesting that sym-
metry breaking may not be possible.
The hierarchy between the type A and type B behavior is

also protected by symmetries. In fact, the system has
multiple symmetries that can do this job. One can rely
on the breaking pattern of the discrete symmetries R and T
mentioned above. If the type A system is Lorentz invariant,
one can use Lorentz symmetry breaking to protect small
Ω’s. More interestingly, without relying on the discrete or
Lorentz symmetries, one can introduce a shift symmetry
linear in time, δϕ1;2 ¼ b1;2t. While the type A kinetic term
is invariant under this symmetry, the type B kinetic term is
not. Breaking the linear shift symmetry to constant shifts
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allows the type A-type B crossover scale to be hierarchi-
cally smaller than the naturalness scale.
Our original motivation for this study of technical

naturalness and hierarchies in SSB came from quantum
gravity and high-energy physics [7,8], especially in the
context of nonrelativistic gravity [19,20]. Besides extend-
ing our understanding of the general “landscape of natu-
ralness,” we expect that our results could find their most
immediate applications in two other areas: in condensed
matter physics and in effective field theory of inflationary
cosmology [21–23]. Both areas treat systems with non-
relativistic, Lifshitz-like symmetries similar to ours. In
condensed matter, the multicriticality of NG modes will
affect their thermodynamic and transport properties; for
example, the type AD modes at the lower critical dimension
will exhibit specific heat linear in temperature T over the
range of T dominated by the z ¼ D dispersion (up to logT
corrections due to self-interactions). In the context of
inflation, our self-interacting scalar field theories represent
a new nonrelativistic variation on the theme of the
Galileon [24], an extension of the z ¼ 2 ghost condensate
[25,26], and of the z ¼ 3 cosmological scalar theory of
Mukohyama [27,28].

We wish to thank Christopher Mogni and Rikard von
Unge for useful discussions. This work has been supported
by NSF Grant No. PHY-1214644 and by Berkeley Center
for Theoretical Physics.
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