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We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting
of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of
the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and
in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳ 1, rapidly
changing spacetime curvature at the end of inflation leads to significant production of Higgs particles,
potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate
collapse of the Universe.
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The standard model (SM) of particle physics can be
consistently extrapolated to the Planck scale without any
new physics, but the current measurements of the Higgs
boson and top quark masses suggest that the current vacuum
state of the Universe would not be stable [1]. This instability
depends sensitively on the top mass mt, which is subject to
significant experimental and theoretical uncertainty [2], but
for the best fit values, the Higgs potential turns negative
above the instability scale ΛI ∼ 1011 GeV [3]. This implies
that the current vacuum would eventually decay into a
negative-energy Planck scale true vacuum, but its lifetime
exceeds the age of the Universe by a wide margin [1].
Whether such a metastable universe could have survived

the cosmological evolution, especially inflation, has
recently attracted significant interest [5–7]. In most of
the simplest models of inflation, the Hubble rate during
inflation is comparable to the current upper bound
H ≲ 9 × 1013 GeV [8]. It may therefore well be above
the instability scale, in which case production of Higgs
fluctuations could push the field over the potential barrier
into the true Planck-scale vacuum [5]. This instability
problem is exacerbated by spacetime curvature-induced
running of the couplings, which makes the Higgs self-
coupling negative even at low field values [6,7,9].
Notably, vacuum stability can still be maintained even

during inflation without any new physics coupled to the SM
fields [6], thanks to the Higgs-curvature coupling ξRĤ†Ĥ.
This coupling is inevitably generated by radiative correc-
tions and when assuming the SM to be valid up to the
Planck scale it is the only relevant new term when probing
sub-Planckian scales. The current experimental constraints
are extremely weak, jξj ≲ 2.6 × 1015 [10]. With a positive
coupling, this term increases the height of the potential

barrier between the vacua, thereby increasing the lifetime of
the metastable vacuum. Vacuum stability is maintained for
all inflationary scales compatible with the tensor bound [8],
provided the electroweak scale value of the running
coupling ξðμÞ lies above ξEW ≳ 0.1 [6].
In this Letter, we investigate the instability problem at

the end of inflation, again assuming no new physics or
higher-dimensional operators but taking the gravitational
coupling ξ into account. In contrast with the Higgs inflation
scenario [11], we assume that the Higgs field is subdomi-
nant, and for simplicity we ignore a possible direct
coupling to the inflation. We focus on the parametric
region ξ > ξc ¼ 1=6 in which case the Higgs is effectively
massive during inflation and does not get displaced from
the SM vacuum. When inflation ends, the curvature scalar
R drops rapidly, reducing the height of the potential barrier.
Eventually, a new barrier is generated by the thermalized
degrees of freedom restabilizing the vacuum. During the
intermediate period rapid changes in the scalar curvature R
can lead to nonadiabatic evolution, giving rise to significant
excitations of the Higgs field, and potentially triggering the
instability. Two major sources of excitations are a sudden
drop in R when inflation ends [12], and parametric
resonance from the oscillating curvature term sourced by
the inflaton [13,14].
We can write the standard model Higgs Lagrangian as

L ¼ jDμĤj2 − ð−M2 þ ξRÞjĤj2 − λjĤj4; ð1Þ
where Dμ is the standard SUð2Þ × Uð1Þ covariant deriva-
tive generalized to curved space, M the Higgs field mass
parameter, and ξ the nonminimal coupling. We will para-
metrize the complex Higgs field doublet Ĥ as
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Ĥ ¼ 1ffiffiffi
2

p
�
ĥ1 þ iĥ2
ĥ3 þ iĥ4

�
: ð2Þ

Assuming the Friedmann-Robertson-Walker metric
ds2 ¼ dt2 − a2dx2 ¼ a2ðdη2 − dx2Þ, and using the con-
formal time coordinate η, we write each of the four
components ĥi as

ĥ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3a2

p ½âkfðηÞeik·x þ â†kf
�ðηÞe−ik·x�; ð3Þ

where k is the comoving momentum and ½âk; â†k0 � ¼
δð3Þðk − k0Þ, ½âk; âk0 � ¼ ½â†k; â†k0 � ¼ 0. Ignoring inter-
actions and the Minkowski space mass term M2, we obtain
the mode equation

f00ðηÞ þ
�
k2 þ

�
ξ −

1

6

�
a2R

�
fðηÞ ¼ 0; ð4Þ

where the prime denotes d=dη and R ¼ 6a00=a3.
We can see that the mode has an effective curvature-

induced mass term

m2
curv ¼

�
ξ −

1

6

�
a2R: ð5Þ

If the frequency of the mode ω2 ¼ k2 þm2
curv satisfies the

adiabaticity condition jω02=ω4j ∼ jω00=ω3j ≪ 1, the mode
equation may be solved adiabatically via a Wentzel-
Kramers-Brillouin (WKB)-type ansatz

fðηÞ ¼ e−i
R

η dη0ωffiffiffiffiffiffi
2ω

p : ð6Þ

The occupation number of a mode is an adiabatic invariant
[15], so if a mode starts in the vacuum and evolves
adiabatically, it will stay unexcited. Only for a fast change
in R do we expect to find sizable excitations.
For simplicity, we will first assume that the equation of

statew ¼ p=ρ changes discontinuously fromw ¼ win ¼ −1
to a constant value w ¼ wout ≥ 0 at the end of inflation. For
constant w, the scale factor behaves as a ¼ ðη=η0Þ2=ð3wþ1Þ,
and the scalar curvature expressed in terms of the Hubble
rate H ¼ _a=a ¼ a0=a2 is R ¼ 3ð1 − 3wÞH2. We assume
that ξ≳ 1, so that the adiabaticity condition is satisfied on
both sides of the transition, but at the transition itself the
curvature mass term drops instantaneously by a factor

m2
out

m2
in

¼ 1 − 3wout

4
: ð7Þ

This nonadiabatic change produces excitations of the
Higgs field.

Following [16] we can write two sets of solutions: finðηÞ
that reduces to the incoming adiabatic mode in the past
and foutðηÞ that reduces to the outgoing mode in the future
with ω2

in ¼ k2 þm2
in and ω2

out ¼ k2 þm2
out, respectively.

The two vacua can be connected with a Bogoliubov
transformation finðηÞ ¼ αkfoutðηÞ þ βkf�outðηÞ, with
Bogoliubov coefficients

αk ¼ 1

2

� ffiffiffiffiffiffiffiffi
ωout

p ffiffiffiffiffiffiffi
ωin

p þ
ffiffiffiffiffiffiffi
ωin

pffiffiffiffiffiffiffiffi
ωout

p
�
; βk ¼ 1

2

� ffiffiffiffiffiffiffiffi
ωout

p ffiffiffiffiffiffiffi
ωin

p −
ffiffiffiffiffiffiffi
ωin

pffiffiffiffiffiffiffiffi
ωout

p
�
:

ð8Þ

For w ≠ 1=3, we can approximate ωin=out ¼ min=out in the
long-wavelength limit k2 ≪ m2

out. In that case the
Bogoliubov coefficients are independent of momentum
and we find the occupation number

nk ≡ hin; 0jn̂outk j0; ini ¼ jβkj2 ¼
ð2 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3w
p Þ2

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3w

p : ð9Þ

In the matter-dominated case (w ¼ 0) this reduces
to nk ¼ 1=8.
In the radiation-dominated case (w ¼ 1=3), ωout ¼ jkj.

At long wavelengths k2 ≪ m2
in we find a momentum-

dependent occupation number

nk ¼ jβkj2 ¼
ffiffiffiffiffi
3ξ

p
a�H�

2jkj ; ð10Þ

where the star � refers to values at the time of the transition
and we have assumed ξ ≫ 1.
In reality, the change in the equation of state is not

instantaneous, and the slower the transition, the fewer
modes are excited. To quantify this, we make use of
Ref. [16] (see also Ref. [17]), and model the time
dependence of the curvature mass term by

m2
curvðηÞ ¼

m2
in þm2

out

2
−
m2

in −m2
out

2
tanh νη: ð11Þ

Here, ν controls the speed of the transition, with ν → ∞ and
ν → 0 corresponding to infinitely fast and infinitely slow
transitions, respectively. This case can also be solved
analytically, and gives the occupation number

nk ¼ sinh2 ½πðωout − ωinÞ=ð2νÞ�
sinhðπωin=νÞ sinhðπωout=νÞ

: ð12Þ

From the various limits of (12) follow a number of physical
implications: In the limit of large momentum, large mass
or slow transition, i.e., k → ∞, ξ → ∞, or ν → 0 the
occupation number approaches zero exponentially. For a
mode to receive excitations one must satisfy (assuming
min > mout)
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jkj≲min fmin;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðν=2πÞ2 −m2

out

q
g: ð13Þ

The excitation of the Higgs field due to the nonadiabatic
behavior at the end of inflation leads to a rapid growth of
the fluctuations of the field. To describe this we calculate
the variance of the field in the “in” vacuum state, at time η
after the transition

hin; 0jĥ2outj0; ini

¼
Z

d3jkj
2ωð2πÞ3a2

�
1þ 2jβkj2 þ 2αkβk cos

�Z
η
dη0ω

��
:

ð14Þ

These fluctuations are uncorrelated on superhorizon scales,
and therefore they correspond to a stochastic background as
opposed to the coherent Higgs condensate generated during
inflation [18]. This will lead to vacuum decay, if the field
value averaged over a sufficiently large volume, which we
conservatively consider to be the whole Hubble volume,
exceeds the position of the potential barrier. Therefore, we
only include modes up to Λ ¼ aH. We also neglect the
vacuum part and coherently oscillating terms in (14),

hĥ2iΛ ≡
Z

Λ

0

djkjk2jβkj2
2π2a2ω

: ð15Þ

Substituting Eqs. (9) and (10), we get for ξ ≫ 1

hĥ2iaH≃
�
H
2π

�
2
(
ð12 ffiffiffiffiffi

3ξ
p Þ−1

�
1− min

mout

�
2
; w≠ 1

3ffiffiffiffiffi
3ξ

p
a=a�; w¼ 1

3

: ð16Þ

From (16) and (7) we see that for w ≠ 1=3 the super-
horizon variance is suppressed by ξ−1=2. This is, however,
not the case for conformal equation of state w ¼ 1=3
due to inverse scaling ξ1=2, whereby a large variance
may be generated for ξ ≫ 1 for a sufficiently rapid drop
in mcurv [19].
As an example, we assume a model where inflation

ends within a time scale ν−1 ∼ ð400HÞ−1 with an effective
reheating equation of state w ¼ 1=3. Using (16) with
ξ≳ 500we get for the magnitude of the generated variance:
hĥ2iaH ≳H2. Therefore, we may conclude that if inflation
ends abruptly to a state with wout ∼ 1=3, a variance larger
than ΛI can be generated for sufficiently high inflationary
scale H ≳ ΛI , such that the fatal transition to the negative-
energy vacuum is likely triggered.
Above, we assumed that the equation of state changes

monotonically to its final value when inflation ends.
However, this is not what happens in most models of
inflation. Instead, the inflaton field oscillates coherently
about its minimum, and this leads to a much stronger effect.
For an inflationary model with a single inflaton field ϕ in
potential VðϕÞ, the scalar curvature R is given by

R ¼ 1

M2
pl

�
4VðϕÞ −

�
dϕ
dt

�
2
�
: ð17Þ

It is clear from this expression that R, and therefore also the
curvature mass term m2

curv, oscillates between positive and
negative values. As a result, the Higgs field grows expo-
nentially in a way that can be interpreted either as tachyonic
or resonant growth.
Reheating via the curvature coupling ξ was first studied

in Ref. [13] where it was named “geometric reheating”
(see also [14]). A similar tachyonic resonance effect present
in reheating models with trilinear interactions was studied
in [20]. Assuming that the inflaton potential can be well
approximated by the quadratic term

VðϕÞ ¼ m2

2
ϕ2; ð18Þ

we can write the solution as ϕðtÞ ¼ Φ cosðmtÞ, where Φ ≈ffiffiffi
6

p
HMpl=m is a slowly varying amplitude and H ≡ 2=ð3tÞ

as given by the equation of state for matter. Substituting this
background solution into Eq. (17) we obtain the Mathieu
form of the mode equation (4):

d2fðzÞ
dz2

þ ½Ak − 2q cosð2zÞ�fðzÞ ¼ 0;

z ¼ mt; Ak ¼
k2

a2m2
þ ξ

Φ2

2M2
pl

; q ¼ 3Φ2

4M2
pl

�
1

4
− ξ

�
:

ð19Þ
Following the analysis of [20] we get for the occupation
number after the first oscillation

n1k ¼ e2Xk ; Xk ¼
Z
Δz

Ωkdz ≈
ffiffiffi
ξ

p Φ
Mpl

; ð20Þ

where Ω2 ≡ −ω2 with ω2 being the term in the square
brackets in (19) and Δz covers the time when ω2 < 0
during first oscillation. In the last form of (20) we have
assumed that jkj ≤ aH and that the amplitude Φ is roughly
constant (a ∼ 1) during the oscillation. It is clear from (20)
that for large ξ the occupation number may become very
large already during the first oscillation. Using (20) we get
an estimate for the superhorizon variance after the first
oscillation (jβkj2 ¼ n1k)

hĥ2iaH≈
Z

aH

0

djkjk2jβkj2
2π2ωout

∼
�
H
2π

�
2 2expf ffiffiffi

ξ
p

2Φ
Mpl

g
3

ffiffiffiffiffi
3ξ

p ; ð21Þ

which is accurate for ξ ≥ 1=6þ 3=8 ∼ 0.5. Below this
region only superhorizon modes with k2 ≤ k2cut ≡
a2H26ðξ − 3=8Þ receive tachyonic amplification. In this
case, an accurate approximation for the superhorizon
variance can be obtained by an expansion near the thresh-
old point ξ ¼ 3=8
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hĥ2iaH ≈ 16

ffiffiffi
3

5

r �
H
2π

�
2

ðξ − 3=8Þ3=2; 3

8
< ξ≲ 1

2
:

ð22Þ

The exponential growth of the particle number and the
variance is constrained by backreaction which eventually
shuts off the tachyonic resonance and makes the dynamics
nonlinear. We consider two backreaction effects: Higgs
self-interaction and gravity.
When considering the Higgs self-interaction, we adopt

the convention that the RG-running parameters are evalu-
ated at the scale μ ¼ H, which corresponds to the optimal
choice in terms of RG-improved effective potential [6] in
case H is the highest scale of the problem [21]. The RG-
running self-coupling λðμÞ becomes negative at the scale of
instability ΛI and therefore we may approximate (μ ¼ H):

λðHÞ≃ λ0sgnðΛI −HÞ; with λ0 ≈ 0.01: ð23Þ

Hence, the backreaction from self-interactions is limited to
the region H < ΛI , while for H > ΛI the negative self-
coupling enhances the tachyonic resonance and accelerates
particle production. However, here we will not consider this
enhancement but use the conservative estimate of (21).
ForH < ΛI, the positive Higgs self-interaction generates

an effective mass

m2
eff ¼ m2

curv þ 6λ0hĥ2i: ð24Þ

The resonance is shut off once (see also [13,22]) Ak þ δA >
2jqj with δA ¼ 6λhĥ2i=m2. From this and Eqs. (23) we
then obtain a condition for maximal variance in the region
H < ΛI: hĥ2i ≲ ξH2=λ0, including contributions from all
tachyonic modes jkj ≤ kcut. The corresponding superhor-
izon variance with jkj ≤ aH is related to the total variance
by hĥ2iaH ∼ hĥ2i=½2ð3ξÞ3=2� and is hence constrained by

hĥ2iaH ≲ H2

6λ0
ffiffiffiffiffi
3ξ

p for H < ΛI; ð25Þ

where we have used R ≈ 3H2 for w ≈ 0 assumed to be valid
after oscillations (or in average during oscillations).
For gravity backreaction we need to compare the energy

density contained in produced Higgs particles to total
energy density ρ ∼ 3H2M2

pl. In Gaussian (Hartree) approxi-

mation with hĥ4i ¼ 3hĥ2i2 we get for the Higgs energy
density an estimate

ρHiggs ≃ 24ξH2hĥ2i þ 6λhĥ2i2; ð26Þ

whereby we find the following constraints for the super-
horizon variance for the Higgs energy density to remain
subdominant during oscillations [23]:

hĥ2iaH ≲ 2M2
pl

11ð3ξÞ5=2 and hĥ2iaH ≲ HMpl

2ð2λ0Þ1=2ð3ξÞ3=2
:

ð27Þ

We estimate that the probability for a potentially
catastrophic transition to the negative-energy vacuum is
significant once the superhorizon variance has exceeded
the instability scale ΛI ∼ 1011 GeV of the Higgs effective
potential:

Δh≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjĤj2iaH

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hĥ2iaH

q
> ΛI: ð28Þ

We show the corresponding region after the first oscillation
as blue in Fig. 1. On the left, at ξ≲ 102, the increase of the
variance is limited by the weakness of the resonance (21),
although the nonshaded area above the dashed blue line
would be mostly filled by the subsequent 3–4 oscillations.
Further to the left, the effect becomes even weaker and
disappears completely at ξ ¼ 3=8. The bottom half of the
plot is excluded by backreaction from the self-interactions.
On the right, the backreaction from the gravity effects
makes the linear approximation invalid, and more sophis-
ticated methods are needed. Backreaction from the other
SM degrees of freedom is not likely to change the
qualitative picture as resonant amplification takes at least
a few inflaton oscillations. A direct Higgs-inflaton coupling
can enhance or weaken the effect depending on the model
but would generally not eliminate it as long as the Higgs
has a tachyonic phase during the first inflaton oscillation.
In conclusion, we have shown that for a sufficiently high

inflationary scale H ≳ ΛI, changing spacetime curvature
can trigger a fatal transition to a negative-energy vacuum,
for a wide range of the curvature coupling 1≲ ξ≲ 105.
This conclusion applies to both rapid reheating and
oscillating inflaton. Combining this with the lower bound

FIG. 1 (color online). The estimated instability region (shaded,
blue) whereΔh≳ ΛI after the first oscillation, given by Eqs. (21),
(22), (25), (27), and (28). The dashed lines correspond to
Δh ≳ 10ΛI and Δh≳ 102ΛI . For the parameters we have used
Φ ¼ 0.3Mpl and ΛI ¼ 10−7Mpl.
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ξEW ≳ 0.1 imposed by stability during inflation [6], we find
that the minimal scenario of standard model in a back-
ground of conventional high-scale inflation constrains the
coupling ξ to be close to its conformal value ξ ¼ 1=6.
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