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Dimension 2 is expected to be the lower critical dimension for Anderson localization in a time-reversal-
invariant disordered quantum system. Using an atomic quasiperiodic kicked rotor—equivalent to a two-
dimensional Anderson-like model—we experimentally study Anderson localization in dimension 2 and we
observe localized wave function dynamics. We also show that the localization length depends
exponentially on the disorder strength and anisotropy and is in quantitative agreement with the predictions
of the self-consistent theory for the 2D Anderson localization.
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The metal-insulator Anderson transition plays a central
role in the study of quantum disordered systems. Using a
tight-binding description of an electron in a lattice,
Anderson [1] postulated in 1958 that the dominant effect
of impurities in a crystal is to randomize the diagonal term
of the Hamiltonian, and showed that this may lead to a
localization of the wave function, in sharp contrast with the
Bloch-wave solution for a perfect crystal. In a weakly
disordered (3D) crystal, the eigenstates are delocalized,
leading to a diffusive (metallic) transport, while strong
disorder produces an insulator with localized eigenstates.
From its original solid-state physics scope [1–4] this
approach has been applied to a large class of systems in
which waves propagate in disorder. This includes quantum-
chaotic systems [5,6] and electromagnetic radiation [7–9].
Important theoretical progress was obtained in Ref. [10],
which postulated that Anderson localization can be
described by a one-parameter scaling law, leading to the
prediction that, for d ≤ 2, the dynamics is generically
localized, even if the disorder is very weak. For d > 2,
it predicted the existence of the Anderson transition
between a diffusive dynamics at weak disorder and a
localized dynamics at strong disorder.
There is no fully quantitative theory of Anderson locali-

zation, and analytic results are scarce. Supersymmetry
techniques [11] allow derivation of expansions in powers
of d − 2 of the various quantities of interest, but reaching
even d ¼ 3 is difficult. A useful, simplified theoretical
approach is the so-called self-consistent theory of locali-
zation. In fewwords, it can be thought as a mean field theory
where large fluctuations are neglected, but where weak
localization corrections to transport, due to interference
between time reversed multiply scattered paths, are
included self-consistently. For spinless time-invariant
systems, belonging to the orthogonal symmetry class
[11], this approach correctly predicts the existence of the

metal-insulator Anderson transition for d > 2, although it
fails to predict the correct critical exponent. For d ¼ 1, it
quantitatively predicts the localization length in a weak
disorder. Other approaches lead to approximate values for
the critical exponent not far from the numerical predic-
tion [12].
Dimension d ¼ 2—the lower critical dimension—is

very special, the localization properties depending on the
symmetry class. In the orthogonal symmetry class, the
dynamics is always localized, but the localization length is
predicted to scale exponentially with the inverse of the
disorder strength, i.e., ξ ∝ lexpðπkl=2Þ [13] where k is
the wave vector and l the mean-free path for propagation in
the disordered medium. As discussed in the Supplemental
Material [14], such an exponential dependence is a sig-
nature of the fact that d ¼ 2 is the lower critical dimension
for Anderson localization. The 2D case has been previously
studied experimentally in optical and ultracold atom
systems [8,18], but no quantitative indication of the
exponential scaling has been demonstrated yet. In the
present Letter, we use the well-known correspondence
between the d-dimension Anderson model and the
d-frequency quasiperiodic kicked rotor [6,19,20] to test
experimentally these predictions.
The quasiperiodic kicked rotor (QPKR) [5,6,19–21] is a

spatially one-dimensional system with an engineered time
dependence such that its dynamics is similar to the
dynamics of a time-independent multidimensional system.
The QPKR can be simply realized experimentally by
exposing laser-cooled atoms (Cesium in the present work)
to a delta-pulsed (kicked) laser standing wave of wave
number kL and time period T1. The amplitude of the kicks
is quasiperiodically time modulated with a frequency ω2.
The dynamics is effectively one dimensional along the axis
of the laser beam, as transverse directions are uncoupled.
The corresponding Hamiltonian is
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H ¼ p2

2
þ K cos x½1þ ε cos ðω2tÞ�

XN−1

n¼0

δðt − nÞ; ð1Þ

where x is the particle position, p its momentum,K the kick
intensity, and ε the amplitude of the modulation. We have
chosen conveniently scaled variables such that distances
along the x axis are measured in units of ð2kLÞ−1, the
particle’s mass is unity and time is measured in units of the
pulse period T1. In the quantum case, a crucial parameter is
k̄ ≡ 4ℏk2LT1=M, the reduced Planck constant.
For ε ¼ 0, one obtains the periodic kicked rotor, which

can be mapped onto a one-dimensional Anderson-like
model [6], and displays “dynamical” localization [5,22],
that is, Anderson localization in momentum space instead
of configuration space. For nonzero ε, the temporal
dynamics of the QPKR is exactly that of a two-dimensional
periodic kicked system [19,20,23], which itself can be
mapped—provided 2π=T1, ω2 and k̄ are incommensurable
numbers—onto a two-dimensional Anderson-like
anisotropic-hopping model, where anisotropy is controlled
by ε and the ratio of hopping to diagonal disorder is
controlled by K=k̄ [24].
The experimental observation of dynamical localization

in the atomic kicked rotor in 1995 [21] can thus be interpreted
as the first experimental observation of 1D Anderson locali-
zation with atomic matter waves. The two-frequency
modulation of the QPKR—which can be mapped on a 3D
Anderson model [20,23]—was used to experimentally
observe 3D Anderson localization and the metal-insulator
Anderson transition [25], accurately measure the critical
exponent, and demonstrate its universality [26].
The experimental study of the 2D case is more

challenging than the 3D one, because the observation of
the exponential behavior of the localization length ploc
requires ploc to vary over about 1 order of magnitude. The
localization time increasing with ploc, this also requires
the ability to preserve coherence over several hundreds
kicks. This needed major evolutions of our experimental
setup [27].
Experimentally, an atomic sample consisting of few

million atoms is prepared in a thermal state (3.2 μK)
whose momentum distribution is much narrower than
the expected localization length. The atomic cloud is then
“kicked” by a far-detuned (Δ ≈ 13 GHz) pulsed standing
wave (SW). Pulse duration is typically τ ¼ 300 ns, while
the typical pulse period T1 ¼ 27.778 μs corresponds to an
effective Planck constant k̄ ¼ 2.89. According to Eq. (1),
an adjustable amplitude modulation with ω2=2π ¼ ffiffiffi

5
p

is
superimposed to the kick sequence. In our previous experi-
ments, to minimize coupling with gravity, the SW was
horizontal. However, for 1000 kicks the atoms fall down by
3.8 mm, compared to the 1.5 mm SW waist, limiting the
maximum number of kicks to 200. In order to overcome
this limit we used in the present experiment a vertical SW,
and the atoms fall freely between kicks. The new SW is

formed by two beams that can be independently controlled,
both in amplitude and phase, through a radio frequency
driving two acousto-optic modulators. This allows us to
accurately cancel gravity effects, by imposing a linear
frequency chirp to one arm of the SW with respect to the
other, so that the SW itself “falls” with acceleration g. A
kicked rotor is thus realized in the free-falling reference
frame. These technical improvements are discussed in more
detail in the Supplemental Material [27]. At the end of the
sequence, the velocity distribution is measured by a
standard time-of-flight technique.
Figure 1(a) shows experimental momentum distributions

ΠðpÞ recorded after 0 to 1000 kicks for K ¼ 5.34,
k̄ ¼ 2.89, ε ¼ 0.36. If the dynamics were classical, the
momentum distribution would keep its initial Gaussian
shape and the average kinetic energy would increase
linearly with time, Ekin ¼ Ekinðt ¼ 0Þ þDt, where D is
the classical diffusion constant in momentum space. In
contrast, the experimental result displays a distribution
which diffusively broadens at short times, but tends to
freeze, i.e., to localize at long times. This clear-cut proof of
localization is confirmed by the shape of the momentum
distribution, shown in Fig. 1(b) after 200 kicks. It very
clearly displays an exponential shape [28] (a straight line in
the logarithmic plot) expð−jpj=plocÞ=2ploc characteristic of
localization with a localization length ploc [29]. Figure 1(c)
shows the momentum distributions after 1000 kicks for
K ¼ 5.34, k̄ ¼ 2.89, and increasing values of ε. It dem-
onstrates that the localization length varies very rapidly
with ε, indicating the evolution from a 1D localization at
ε ¼ 0 to a truly 2D localization with a much longer
localization length at ε ¼ 0.6. In order to prevent trivial
localization on KAM tori [30], we always used K > 4,
ensuring that the classical dynamics is ergodic.
Instead of measuring the full momentum distribution, it

is sufficient to measure the population Π0ðtÞ of the zero
velocity class as

Ekin ∝
1

4Π2
0ðtÞ

ð2Þ

is proportional to hp2iðtÞ (as the total number of atoms is
constant) [31].
Figure 2 displays Ekin (at 1000 kicks) vs ε for various

values of K and k̄ , showing that the exponential depend-
ence in ε is a general feature, with a rate that decreases
with k̄ and increases withK. Note the overall Ekin dynamics
of a factor of 60 (corresponding to an eightfold increase in
the localization length), a key feature of the present
experiment.
The scaling theory of localization [10] predicts that

dimension d ¼ 2 is the lower critical dimension for the
Anderson transition. For a time-reversal invariant spinless
system (thus belonging to the orthogonal universality
class), all states are localized with an exponentially large
localization length. For a usual 2D time-independent
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system, the relevant parameter is the dimensionless con-
ductance at short scale, equal to the product kl of the wave
vector by the mean free path, so that the logarithm of the
localization length is proportional to kl [14].

The scaling theory cannot be directly transposed to the
case of the kicked rotor for two reasons. (i) There is no
wave vector playing the role of k. Instead, one must
consider the diffusion constant (in momentum space),
which is, for a periodic kicked rotor, approximately equal
to K2=4. (ii) The diffusion process for the 2D quasiperiodic
kicked rotor is not isotropic. As shown in Ref. [32] and
discussed in the Supplemental Material [14], the quasi-
periodic kicked rotor can be mapped on a 2DAnderson-like
model, whose dynamics at short time is indeed diffusive,
but anisotropic. Along the “physical” direction (which
coincides with the atom momentum component along
the standing wave), the diffusion constant is—for small
ε—almost equal to the one of the periodic kicked rotor,
D11 ≈ K2=4; along the other (virtual) direction, the dif-
fusion constant is D22 ≈ K2ε2=8, so that it vanishes in the
limit ε → 0, where one must recover the usual 1D periodic
kicked rotor.
Altogether, the relevant parameter is the geometric

average of the diffusion constant along the two directionsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p
∝ εK2. The scaling theory predicts that the

logarithm of the localization length should be proportional
to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11D22

p
=k̄ 2. A similar prediction was made in Ref. [19]

using a slightly different method.
The self-consistent theory of localization is an attempt

towards more quantitative predictions, based on the same
ideas as the scaling theory. It has been successfully used to
predict properties of the Anderson transition [33,34], and
was transposed to the periodic kicked rotor in Refs. [22,35]
and to the quasiperiodic kicked rotor with two additional
driving frequencies in Ref. [36]. It consists in computing
perturbatively the weak localization correction to the
(anisotropic) diffusion constant and to extrapolate to
the strong localization regime. It, however, depends on

FIG. 2 (color online). Kinetic energy Ekin of the quasiperiodic
kicked rotor vs the modulation amplitude ε, for various values of
the kicking strength K and effective Planck constant k̄ . The error
bars indicate the typical experimental uncertainty. The four
curves are straight lines in this logarithmic scale, with a slope
that decreases with k̄ and increases with K.

FIG. 1 (color online). Experimentally recorded momentum
distributions for the kicked rotor exposed to a quasiperiodic driving,
Eq. (1). (a) K ¼ 5.34, k̄ ¼ 2.89, ε ¼ 0.36, 0 to 1000 kicks (step
200). The momentum distribution diffusively broadens at short
times and freezes at longer times, proving the existence of 2D
Anderson localization. Time increases from top to bottom curves.
(b) Momentum distribution at 200 kicks in log scale, showing the
exponential shape characteristic of localization. The circles are
experimental points, the blue dashed line is a Gaussian fit and the
black solid line an exponential fit for jpj > 3ð2ℏkLÞ. (c) Localized
momentum distributions after 1000 kicks, as a function of the
anisotropy parameter ε, for K ¼ 5.34, k̄ ¼ 2.89 as in (a) and (b).
The modulation amplitude ε increases from top to bottom curves.
The rapid increase of the localization length shows the evolution
from the 1D localization at ε ¼ 0 to the truly 2D Anderson
localization.Note the different horizontal scales in thevarious plots.
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the cutoffs used. For our quasiperiodic kicked rotor [14] it
confirms the prediction of the scaling theory, namely,

ploc ¼
K2

4k̄
exp

�
αεK2

k̄ 2

�
ð3Þ

where α is a number of the order unity, which may however
depend smoothly on the parameters. In the limit ε → 0, it
is α ¼ π=

ffiffiffiffiffi
32

p
.

In Fig. 3, we display the results of 275 measurements,
corresponding to 12 values of the ratio K=k̄ ∈ ½1.3; 2.5�,
with K ∈ ½4.33; 7.26� and k̄ ¼ f2.89; 3.2; 3.46g, and to ε
values from 0 to 0.6 (step 0.06). Dividing EkinðεÞ by
Ekinðε ¼ 0Þmakes it possible to probe the exponential term
in Eq. (3). The exponential dependence (straight line in
logarithmic scale) is visible for ε≲ 1, materialized by the
red dashed line, corresponding to the prediction α ¼
π=

ffiffiffiffiffi
32

p
of the self-consistent theory. Despite the spreading

of the experimental results around the average trend, the
overall agreement is rather good. This proves the expo-
nential dependence of the localization length in 2D, and

thus that d ¼ 2 is the lower critical dimension for the metal-
insulator Anderson transition. Some deviations are never-
theless visible. They arise from different phenomena. First,
for large ε, the localization time can be only slightly shorter
than the duration of the experiment (1000 kicks), meaning
that the measured momentum distribution is not the
asymptotic one for infinite time and underestimates the
eventual saturation of Ekin at long time. This explains why
the experimental points at large ε tend to lie below the
theoretical prediction. This is confirmed by numerical
calculations in the experimental conditions for the largest
value ofK=k̄ ¼ 2.5 (longest localization time), see the solid
lower curve in Fig. 3. A second, more fundamental,
phenomenon is that Eq. (3) assumes that the classical
diffusion constant is simply K2=4, which is valid only for
K ≫ 1, whereas oscillatory corrections at moderate K are
known to exist for the 1D kicked rotor [37] and to persist
even for the 3D QPKR [32]. This dependence is thus not
eliminated by the normalization to Ekinðε ¼ 0Þ. This
explains a significant part of the spreading of the data.
Finally, Eq. (3) is expected to be valid in the ε → 0 limit,
see Supplemental Material [14]. At larger ε values, higher
order terms must come into play and are responsible for
significant deviations. This is visible in Fig. 3, where both
experimental (points) and numerical (solid lines) data are
well predicted at small εK2=k̄ 2, but are more widely spread
as εK2=k̄ increases. A thorough analysis of all these
deviations is beyond the scope of this Letter.
To summarize, we presented the first experimental

evidence of two-dimensional Anderson localization with
atomic matter waves. We studied the variation of the
localization length with the system parameters and showed
that it displays an exponential dependence characteristic of
time-reversal spinless systems. To the best of our knowl-
edge, such experimental evidence has not been observed
previously. It demonstrates experimentally that d ¼ 2 is
the lower critical dimension of the Anderson transition. The
observed localization length varies as predicted by the
scaling and the self-consistent theories of localization.
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FIG. 3 (color online). Increase in the kinetic energy at t ¼ 1000
(∝p2

loc) of the quasiperiodic kicked rotor with respect to the purely
one-dimensional situation ε ¼ 0 vs the scaling parameter εðK=k̄ Þ2.
The cloud of experimental points—collected at various values of
K, ε and k̄ —is distributed around an average linear dependence in
this semi-logarithmic plot, which shows the exponential depend-
ence of the localization length, characteristic of 2D Anderson
localization. The red dashed line is the prediction of Eq. (3). The
spread is due in part to experimental imperfections [at large
εðK=k̄ Þ2, the localization time is notmuch shorter than the duration
of the experiment] and in part to fundamental reasons: The linear
dependence on εK2=k̄ 2 in the argument of the exponential, Eq. (3),
is valid only at small ε, and the formula assumes that the classical
diffusion constant is proportional to K2, while the actual diffusion
constant has oscillatory corrections. The black curves are numeri-
cal simulations corresponding to the two “extreme” values of
K=k̄ ¼ 1.3;, k̄ ¼ 3.46 (higher curve) and K=k̄ ¼ 2.5, k̄ ¼ 2.89
(lower curve); they display the same spreading phenomenon.
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