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By event-driven molecular dynamics simulations we investigate magnetotransport in a two-dimensional
model with randomly distributed scatterers close to the field-induced localization transition. This transition
is generated by percolating skipping orbits along the edges of obstacle clusters. The dynamic exponents
differ significantly from those of the conventional transport problem on percolating systems, thus
establishing a new dynamic universality class. This difference is tentatively attributed to a weak-link
scenario, which emerges naturally due to barely overlapping edge trajectories. We make predictions for the
frequency-dependent conductivity and discuss implications for active colloidal circle swimmers in a
hetegogeneous environment.
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Electronic transport in two-dimensional (2D) disor-
dered structures under the influence of a magnetic field
exhibits a fascinating wealth of observed phenomena
[1–11], including the quantum Hall effect [12–15]. The
field has gained new momentum by recent investigations
on disordered graphene [16–18] and other topological
insulators [19,20]. For many of these phenomena classical
magnetotransport constitutes the basis of a semiclassical
description [13,21–23]. For instance, the edge states in
quantum Hall systems are the quantum analogue of
“skipping orbits,” trajectories formed by circular arcs
bouncing along the edges of a mesoscopic structure.
One of the widely investigated classical models for

transport in disordered systems is the Lorentz model
[24,25]. In this model a particle is specularly scattered
by circular or spherical obstacles, which may overlap and
are distributed randomly according to a Poisson process.
Transport within the Lorentz model and the associated
percolation transition have been studied extensively in the
past [26–33]. The Lorentz model has been considered also
in the presence of an applied magnetic field [1–6,34–38];
i.e. the linear paths between successive specular scattering
events are replaced by circular arcs. It turned out that in the
presence of the field a description of the transport in terms
of the Boltzmann equation is no longer appropriate because
of the breakdown of both ergodicity [23,39] and the
Markov property of the scattering sequence [3–5]. The
resulting strongly correlated kinetics exhibits a rich sce-
nario of anomalous magnetoresistance [1–4,34–37]. Let us
note that the circular motion is not only realized by
electrons in a magnetic field, but also by active particles
subject to asymmetric driving [40–45]. Such particles in the
presence of randomly distributed obstacles [46,47] provide

a colloidal analogue of the Lorentz model with magnetic
field.
An interesting feature of this Lorentz model is the

existence of a magnetic-field-induced localization, which
is of percolative character [1,2,4,6]. Via the classical-
quantum correspondence this transition is also relevant
for the quantum localization in a magnetic field. Very
recently, a theoretical investigation of spin-Hall topological
insulators with random circular obstacles has shown that,
because of edge-state percolation, a similar insulator-
conductor transition emerges [48]. For the magnetic tran-
sition a relation for the field-dependent critical density has
been derived by Kuzmany and Spohn [6]. A detailed
numerical investigation of this transition and the associated
critical transport has remained a challenge so far.
Here, we present results of large-scale molecular dynam-

ics (MD) simulations for the Lorentz model with circular
motion. We focus on the field-induced localization tran-
sition and investigate the nature of the trajectories leading
to critical slowing down and anomalous diffusion. In
particular we determine the static and dynamic critical
exponents both for the conventional and the magnetic
transition and argue for a new universality class of the
latter. We shall present a heuristic argument for the
suppression of transport with respect to the standard
transport scenario on percolating systems.
Our setup describes a two-dimensional gas of classical,

independent carriers of charge q and mass m in a random
array of overlapping hard-disk obstacles of radius σ in the
presence of a perpendicular, uniform magnetic field B. The
particles move with constant velocity v, and the trajectories
become skipping orbits [49] consisting of circular arcs
with cyclotron radius R ¼ mv=qB connected by specular
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scattering events (Fig. 1). We employ event-driven MD
simulations similar to the field-free case [28,33,50].
Furthermore we consider uniformly distributed obstacles
of number density n, leaving as control parameters the
dimensionless density n� ¼ nσ2 and the dimensionless
ratio R=σ. At densities n� > n�c ¼ 0.359 081… [29,31,51]
the accessible void space consists only of disconnected
pockets, prohibiting long-range transport. At lower den-
sities an infinite void-space cluster emerges, and a finite
diffusivity D arises if the particles can permeate the entire
system via skipping orbits; see Fig. 1. At low densities the
skipping-orbit motion occurs only around isolated obstacle
clusters, which corresponds to a magnetic-field-induced
insulating phase (topological insulator). Whereas deep in
the conductive phase the trajectories are dominated by
many scattering events similar to the field-free case, close
to the transition the motion is characterized by regular
skipping orbits jumping occasionally between isolated
obstacle clusters.
We have determined the mean-square displacement

(MSD) δr2ðtÞ≔h½RðtÞ − Rð0Þ�2i as averages over time,
tracer ensemble, and disorder. We have used large system
sizes of 104σ with periodic boundaries. As an example we
show data for R=σ ¼ 0.9 in Fig. 2. For moderate densities
(n� ≳ 0.1) the MSD grows linearly in time δr2ðt → ∞Þ≃
4Dt for long times, where D is the diffusion coefficient.
Decreasing the density n� this linear regime is delayed to
longer and longer times, until eventually at a critical density
n�m ¼ n�mðRÞ the long-time behavior becomes subdiffusive,
δr2ðt → ∞Þ ∼ tγ, with an observed exponent of γ ¼
0.581� 0.005 [52]. The inset of Fig. 2 shows a rectification
by means of the local exponent γðtÞ≔d log ½δr2ðtÞ�=d logðtÞ
as a function of time, corroborating the long-time asymp-
totics. Such fractional (or anomalous) diffusion is found
widely in complex systems, but the physical origins are
often difficult to pin down [54–56]; here it emerges
naturally from a critical phenomenon. The anomalous

exponent is related to the dynamic critical exponent z
via γ ¼ 2=z, which gives z ¼ 3.44� 0.03. This value is
incompatible with the known dynamic exponent zlat ¼
3.036� 0.001 (corresponding to γlat ¼ 0.658; see the
inset of Fig. 2) for two-dimensional random walkers on
percolating lattices [30,57], valid also for the field-free
localization transition [29,31,58,59]. Although the values
of z and zlat differ only by 10%, the data cannot be
described in a satisfactory way [52] with an assumed
exponent zlat, even if corrections to scaling [30] are
included. Decreasing the density below n�m the MSD
converges at long times δr2ðt → ∞Þ ¼ l2, which defines
l as the localization length.
The data close to the magnetic transition suggest a

dynamic scaling scenario similar to the localization tran-
sition for transport on percolating clusters [31]. Here the
localization length l is identified with the mean-cluster size
diverging as l ∼ jεj−ðν−β=2Þ upon approaching the transi-
tion, where ε ¼ ðn� − n�mÞ=n�m is the dimensionless sepa-
ration parameter. The exponent ν quantifies the divergence
of the largest finite cluster of linear extension ξ ∼ jεj−ν
(correlation length), and β measures the weight of the
infinite cluster ∼εβ for n� > n�m (order parameter). In 2D,
the values for standard percolation are known exactly:
ν ¼ 4=3, β ¼ 5=36 [57]. We verified by means of a
rectification plot that, indeed, our data for l are compatible
with these values [Fig. 3(a)].
The MSD is expected to obey dynamic scaling,

δr2ðtÞ ¼ t2=zδr̂2�ðt̂Þ, with scaling functions δr̂2þð·Þ and
δr̂2−ð·Þ for the conducting and the insulating side,

FIG. 1 (color online). Typical trajectories for classical magneto-
transport. Left: conductive phase well above the magnetic
transition (R=σ ¼ 2.0, n� ¼ 0.3); right: almost at the transition
(R=σ ¼ 0.9, n� ¼ 0.1), see the red dots in Fig. 4. FIG. 2 (color online). Mean-square displacements δr2ðtÞ for

R=σ ¼ 0.9. The density n� decreases from top to bottom. The
dashed line indicates the critical asymptote ∝ t2=z with z ¼ 3.44.
Inset: local exponent γðtÞ≔d log ½δr2ðtÞ�=d logðtÞ as a function of
time at the magnetic transition, n� ¼ n�mðRÞ, for three cyclotron
radii: R=σ ¼ 0.5 (cyan circles), 0.9 (blue triangles), and 2.0 (red
squares). The two horizontal lines mark the subdiffusion ex-
ponent for the universality classes of lattice percolation (2=zlat)
and of the magnetic localization transition (2=z), respectively.
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respectively. Here time enters only in a rescaled way
t̂ ¼ t=tx with a crossover time tx ∼ lz. The scaling func-
tions become constant for small argument, δr̂2�ðt̂ ≪ 1Þ ¼
const (critical regime), whereas for large argument they
approach δr̂2þðt̂ ≫ 1Þ ∼ t̂1−2=z on the conducting side and
δr̂2−ðt̂ ≫ 1Þ ∼ t̂−2=z on the insulating side. Hence one infers
that the diffusion coefficient vanishes as D ∼ εμ with a
magnetic conductivity exponent μ ¼ ðz − 2Þðν − β=2Þ ¼
1.82� 0.04. This exponent differs significantly from the
corresponding standard value for random resistor networks
on lattices, μlat ¼ 1.310 [27,30].
We have measured diffusivitiesD ¼ Dðn; RÞ throughout

the phase diagram; see Fig. 4. In particular, we have
verified the magnetic transition scenario also for two other
values for the cyclotron radius and found similar results for
the conductivity exponent at R=σ ¼ 0.5 and R=σ ¼ 2.0

[52,60]. In order to judge whether the slight variation of
these values with R is significant or just due to asymptotic
corrections and the limited accuracy, we made a rectifica-
tion plot [Fig. 3(b)] with the same value μ ¼ 1.82 for all
values of R and obtain satisfactory rectifications. We
conclude that, within our accuracy, the dynamic critical
exponents of the magnetic transition have values μ ¼
1.82� 0.08 and z ¼ 3.44� 0.06 [52] and do not depend
on the field parameter 1=R.
As mentioned in the introduction, a relation between the

critical density n�m of the magnetic localization transition
and the applied field B has been suggested by Kuzmany
and Spohn [6]. They argued in terms of the cyclotron radius
R ¼ mv=qB that one should consider the percolation of
disks of effective radius Rþ σ. This argument leads to a
critical density given by

n�mðRÞðσ þ RÞ2=σ2 ¼ n�c ¼ 0.359081…; ð1Þ

this line of magnetic transitions is included in Fig. 4. We
have verified that the critical magnetic density n�m observed
in our simulations coincides with this prediction to at least
two significant digits at the three values of R explored,
which suggests that Eq. (1) is an exact relation.
The phase diagram displays a second transition line

which is independent of the magnetic field and occurs at the
percolation density n�c. We have verified that the values of
the scaling exponents characterizing this localization tran-
sition are the same as in the field-free case, irrespective of
the magnitude of the magnetic field.

(a)

(b)

FIG. 3 (color online). (a) Rectification plot of the squared
localization length ðl=σÞ2jεj2ν−β vs jεj ¼ jn� − n�mðRÞj=n�mðRÞ in
the insulating phase for different cyclotron radii R. Error bars
combine statistical errors and uncertainties in reading off l2 from
the long-time asymptotes of δr2ðtÞ. Thin solid lines indicate
weighted averages of the data points and shaded bars the
uncertainty of the respective mean value; only data points covered
by the bars were taken into account. (b) Rectification plot of the
diffusion constant ðD=vσÞε−μ vs ε in the conducting phase. Data
for different R are shifted downwards by factors of 2. For all the
three values of R the same conductivity exponent μ ¼ 1.82 was
used.
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FIG. 4 (color online). Phase diagram: magnetic field σ=R ∝ B
vs density n�. The isodiffusivity contours are spaced logarithmi-
cally and increase from the phase boundaries towards the inner
region. The red line corresponds to the magnetic transition ac-
cording to Kuzmany and Spohn [6], n�mðRÞ ¼ n�cσ2=ðσ þ RÞ2. The
big red dots indicate the parameters for the trajectories of Fig. 1.
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Why do the values for μ and z differ from their
conventional ones? It is well known that the dynamic
exponents for transport on percolating systems may differ
from those of the standard random resistor network due to
the presence of weak links. It has been demonstrated by
means of mapping the traditional nodes-links-blobs model
of percolation clusters to conductance networks [61] that if
the distribution of conductances Γ along weak links obeys a
singular statistics, ϱðΓÞ ∝ Γ−a with 0 < a < 1, there exists
an exponent relation

μ ¼ max ½μlat; ðd − 2Þνþ 1=ð1 − aÞ�; ð2Þ

where d is the dimension of the embedding space. This
relation has been shown to be exact to all orders in a
renormalization group ε-expansion [62]. The conductances
can also be interpreted as transition probabilities across the
weak links. Machta and Moore [63] have shown that weak
links emerge in the (field-free) Lorentz model and lead to a
value of a ¼ ðd − 2Þ=ðd − 1Þ. Accordingly, in d ¼ 3 weak
links dominate the transport while in d ¼ 2 the standard
random-resistor exponents are valid.
If the weak-link scenario is responsible for the modified

value μ, a certain value of a ¼ 1 − 1=μ for the distribution
of weak links has to be rationalized. As noted above, near
the magnetic transition the centers of the skipping orbits
move along the perimeter of a percolation cluster formed by
circles of radius σ þ R. This cluster is generated by isolated
obstacle clusters; see the right panel of Fig. 1. Aweak-link
scenario can be identified considering the transitions of the
trajectories between these clusters. The weak links corre-
spond to configurations at which the circles formed by the
centers of the skipping orbits have a very small overlap; see
Fig. 5. As the two Cartesian components of the centers of

the skipping orbits are canonically conjugate to each other
[14], their possible values inside the overlap area A
represent the phase space for the transition. Thus the
transition probability across the weak link is proportional
to this overlap region A. Let us speculate how the decrease
of the overlap region A induces a suppression of transport,
i.e. an increase of the conductivity exponent μ. Following
Machta and Moore [63], the probability density PðWÞ for
the width W of the overlap of randomly distributed disks
(Fig. 5) approaches a constant PðW → 0Þ ≠ 0 in the limit
W → 0. By geometric considerations one can work out that
A ∼W3=2 for W → 0. Thus the probability density ϱðΓÞ of
the transition rates Γ ∝ A satisfies ϱðΓÞ ¼ PðWÞdW=dΓ ∼
PðW → 0ÞdW=dA ∼ A−1=3 ∼ Γ−1=3 and thus a ¼ 1=3. By
virtue of the hyperscaling relation, Eq. (2), this leads
to a value of μ ¼ 3=2 which is closer to the observed
value μ ≈ 1.82 than the standard conductivity exponent
μlat ¼ 1.310.
In conclusion we have studied for the first time dynamic

critical behavior of the low-density, magnetic-field-induced
localization transition in the Lorentz model, using high-
quality data obtained by state-of-the-art event-driven MD
simulations. We have identified that this transition com-
prises a new universality class of dynamic percolation in
that the dynamic exponents are different from their counter-
parts in conventional percolation problems.
We were able to corroborate a weak-link scenario for

transitions between the barely overlapping edge states.
Remarkably, weak links are relevant for the magnetic 2D
Lorentz model with magnetic field—in contrast to the usual
case (without field) where weak links are only of impor-
tance in d ¼ 3 [28,30,31,63]. We mention also that near the
magnetic transition the path described by the centers of the
skipping orbits constitutes a disordered topological insu-
lator, as this directed path runs along the perimeter of an
effective percolating cluster of disks.
Our findings have direct implications for the complex

frequency-dependent conductivity ΣðωÞ, measurable in a
conventional transport setup for magnetoresistance of a 2D
electron gas [64]. By the Einstein-Kubo relation ΣðωÞ ∝
ZðωÞ [65], where ZðωÞ is the Fourier-Laplace transform of
the velocity autocorrelation function, the subdiffusive
motion directly at the transition translates to an anomalous
power-law dispersion Σðω → 0Þ ∼ ω1−2=z [33,66], with a
rich cross-over scenario as n�↓n�m (see Ref. [52] and
Fig. S3 therein).
Finally, we point out that the field-induced percolation

transition, which is entirely of geometric origin, may also
be realized experimentally by colloidal circle swimmers
[40–45] in a heterogeneous environment [46,47]. If in our
model the condition of specular reflection at the obstacles is
replaced by an appropriate distribution of random reflec-
tions [47], the maximum distance between the center of an
orbit and an obstacle is still σ þ R, and the condition for a
curvature-induced percolation transition is also given by

A

W
σ

R

FIG. 5 (color online). Visualization of the weak-link scenario of
the field-induced percolation transition. Filled (apricot) circular
regions are obstacles, the continuous (blue) arcs form a skipping
orbit, and dashed circles are loci of skipping-orbit centers. The
(green) overlap area of center loci scales as A ∼W3=2 for
vanishing width W.
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Eq. (1). It will be worthwile to study this transition in the
future.
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