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Although there are many theoretical studies of the mean first-passage time (MFPT), most neglect the
diffusive heterogeneity of real systems. We present exact analytical expressions for the MFPTand residence
times of a pointlike particle diffusing in a spherically symmetric d-dimensional heterogeneous system
composed of two concentric media with different diffusion coefficients with an absorbing inner boundary
(target) and a reflecting outer boundary. By varying the convention, e.g., Itō, Stratonovich, or isothermal,
chosen to interpret the overdamped Langevin equation with multiplicative noise describing the diffusion
process, we find different predictions and counterintuitive results for the residence time in the outer region
and hence for the MFPT, while the residence time in the inner region is independent of the convention. This
convention dependence of residence times and the MFPT could provide insights about the heterogeneous
diffusion in a cell or in a tumor, or for animal and insect searches inside their home range.
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The first-passage time is an important concept in many
fields where complexity and randomness are intricately
coupled, including biophysics, ecology, and economics
[1–6]. In many cases, the stochasticity originates from the
medium in which the system is embedded, e.g., Brownian
motion where the noisy driving term arises from the
thermal fluctuations of the surrounding environment.
The stochastic process involved can be described in

several different equivalent ways, for example, with a
stochastic differential equation (SDE) for the random
variables or with a (deterministic) partial differential
equation of the Fokker-Planck kind for the probability
density function (PDF) [7,8].
These two descriptions are equivalent, but for hetero-

geneous systems the link may not be unique and generally
needs to be specified from a phenomenological point of
view. This is the so-called Itō-Stratonovich dilemma
[7–10]: the position-dependent diffusivity in the over-
damped Langevin equation results in a multiplicative noise
whose formal integration has several possible interpreta-
tions leading to different predictions. More specifically, let
us consider the following one-dimensional SDE:

xðtþ dtÞ ¼ xðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dðx�Þ

p
dWðtÞ; ð1Þ

where DðxÞ is the position-dependent diffusion coefficient
of a Brownian motion, for example, and dWðtÞ is the
increment of a Wiener process of variance proportional to
the (small) time increment dt. The position x� in Dðx�Þ is
an intermediate point between xðtÞ and xðtþ dtÞ defined
by x� ¼ αxðtþ dtÞ þ ð1 − αÞxðtÞ, where α ∈ ½0; 1� is part
of the system under study and must be chosen on physical
grounds [9–11].
Formal integration of Eq. (1) shows that its solutions

depend on α, i.e., the anticipating parameter describing the

convention chosen to interpret
ffiffiffiffiffiffiffiffiffiffiffiffi
Dðx�Þp

dWðtÞ. Three
conventions are commonly considered: α ¼ 0, the Itō
convention [12]; α ¼ 1=2, the Stratonovich convention
[13]; α ¼ 1, the isothermal (or kinetic or Hänggi-
Klimontovich) convention [14–16].
To each convention corresponds a stochastic calculus

and various experimental and theoretical works have shown
the relevance of these three different calculi. For example,
the nonanticipating property of the Itō calculus is essential
for modeling the dynamics of financial assets like stock
prices [2], dye diffusion in a fluid with heterogeneous
viscosity [17], phase transitions induced by multiplicative
noise [18], and some biological processes [19].
In the Stratonovich convention, the anticipating point x�

is located at the midpoint of the interval ½xðtÞ; xðtþ dtÞ�
and the corresponding stochastic calculus obeys the same
rules as normal calculus. It is the correct calculus for the
derivation of the Langevin SDE from stochastic systems
with inertia [20] or with a small, finite noise correlation
time [21]. Experiments show its validity for analogue
simulators using electronic devices [22,23] and in stochas-
tic models of pricing with bounded variations [24].
The highly anticipating property of the isothermal

convention leads to some counterintuitive behavior,
which has recently revived the Itō-Stratonovich dilemma
[10,25–27]. Isothermal calculus seems to correspond to the
natural framework of Fick’s law and some recent experi-
ments tend to confirm its applicability, especially for
particles diffusing near a wall [25–29]. One should also
mention its important role for generalizing the fluctuation-
dissipation relation for equilibrium systems with nonlinear
friction [30–32]. In a recent model [33] all three con-
ventions were required to describe the diffusion of a
particle in a modulated periodic potential.
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Although many articles address the Itō-Stratonovich
dilemma, there is to our knowledge no published work
on the effect of the choice of the convention on the
first-passage times. Therefore, in this Letter, we examine
simple composite systems with spherical symmetry com-
posed of m concentric regions of uniform diffusivities
D1; D2;…; Dm such that DðrÞ ¼ Di for Ri−1 < r ≤ Ri
with a target at r ¼ R0 ¼ a and a reflecting boundary at
r ¼ Rm ¼ R. We focus on the casem ¼ 2, shown in Fig. 1,
but give general results where appropriate. We also exam-
ine the residence times in each region to help shed light on
some recently observed nonintuitive behavior of the mean
first-passage time (MFPT) in a particular case [34].
From the SDE (1), one can derive the following (Fokker-

Planck) diffusion equation [35]

∂nðr; tÞ
∂t ¼ 1

rd−1
∂
∂r

�
rd−1DðrÞα ∂½DðrÞ1−αnðr; tÞ�

∂r
�
: ð2Þ

By invoking the equation of continuity, ð∂=∂tÞnðr; tÞ ¼
−∇ · jðr; tÞ, we obtain the radial component of the flux

jðr; tÞ ¼ −DðrÞα ∂½DðrÞ1−αnðr; tÞ�
∂r : ð3Þ

Note that while the flux is continuous whatever the
convention α is, the PDF nðr; tÞ may not be continuous.
Indeed, nðr; tÞ is continuous at r ¼ rc only for α ¼ 1 while
DðrÞnðr; tÞ and ffiffiffiffiffiffiffiffiffiffi

DðrÞp
nðr; tÞ are continuous for α ¼ 0 and

α ¼ 1=2, respectively. As a consequence, for α ≠ 1, nðr; tÞ
is discontinuous wherever DðrÞ is discontinuous (see the
movie provided in the Supplemental Material [36]). In
the present system there is no nontrivial steady state due to
the presence of an absorbing boundary. Figure 2 shows the
normalized nðr; tÞ as heat maps obtained by numerical
(agent based) simulations of the SDE describing the

one-dimensional system [36]. The discontinuity at rc is
evident whenever α ≠ 1.
The usual strategy to obtain the MFPT consists of

solving the (time) Laplace transform of Eq. (2) with
appropriate boundary conditions, then finding the flux
from which the MFPTand higher moments can be obtained
[1]. Here, we employ an alternative, more compact method
[46] that, while restricted to systems with reflecting
boundary conditions, is particularly well suited when D
is piecewise uniform. Since the system under study
possesses an absorbing boundary, the MFPT to reach it
can be expressed as the sum

τðr0Þ ¼
Xm
k¼1

τkðr0Þ; ð4Þ

where

τkðr0Þ ¼
Z
Rk

drrd−1
Z

∞

0

dtnðr; t; r0Þ ð5Þ

is the residence time in the region Rk ¼ ½Rk−1; Rk�, and
where the PDF nðr; t; r0Þ has been renormalized to absorb
the numerical factor 2πd=2=Γðd=2Þ coming from the inte-
gration of the angular coordinates. The residence times
τkðr0Þ represent the amount of time the diffusing particle
spends in each region before reaching the target at r ¼ a.
Taking into account the reflecting boundary at r ¼ R and
integrating the equation of continuity, we obtain

jðr; tÞ ¼ 1

rd−1

Z
R

r
dr0r0d−1

∂nðr0; tÞ
∂t : ð6Þ

Inserting Eq. (3) in Eq. (6) and integrating over position we
obtain

nðr; tÞ ¼ −
1

DðrÞ1−α
Z

r

a

dy
yd−1DðyÞα

Z
R

y
dxxd−1

∂nðx; tÞ
∂t :

ð7Þ
Inserting this in Eq. (5) with the initial condition
nðr; 0Þ ¼ δðr − r0Þ=r0d−1, where δðrÞ is the Dirac delta
function, gives

τkðr0Þ ¼
ZRk

Rk−1

dz
zd−1

DðzÞ1−α
Zz

a

dy
yd−1DðyÞα θðr0 − yÞ ð8Þ

as the residence time in Rk where θðrÞ is the Heaviside
step function. One can then check that τðr0Þ is the solution
of the backward Fokker-Planck equation derived by Szabo,
Schulten, and Schulten [47] generalized here as L†τðr0Þ ¼
D1−α∇ · ½Dα∇τðr0Þ� ¼ −1 where L† is the adjoint operator
of L ¼ ∇ · ðDα∇D1−αÞ appearing in Eq. (2).
We now present explicit results form ¼ 2 layers. For any

dimension d ≠ 2, the residence times appearing in Eq. (4)
are given by

FIG. 1 (color online). Spherically symmetric three-dimensional
system composed of two different concentric media with dif-
fusion coefficientsD1 for a < r < rc andD2 for rc < r < R. The
search begins at r ¼ r0 and ends when the walker reaches the
target at r ¼ a (blue). The dashed arrows indicate the starting
points of two trajectories, one in R1 and the other in R2.
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τ1ðr0Þ ¼

8>>><
>>>:

1
D1

�
rdc

r02−d−a2−d
dð2−dÞ − r02−a2

2d

�
for r0 ≤ rc;

1
D1

�
rdc

r2−dc −a2−d
dð2−dÞ − r2c−a2

2d

�
for r0 ≥ rc;

ð9Þ

τ2ðr0Þ ¼

8>>>>>><
>>>>>>:

Rd−rdc
Dα

1
D1−α

2

r02−d−a2−d
dð2−dÞ for r0 ≤ rc;

Rd−rdc
Dα

1
D1−α

2

r2−dc −a2−d
dð2−dÞ

þ 1
D2

�
Rd r02−d−r2−dc

dð2−dÞ − r02−r2c
2d

�
for r0 ≥ rc:

ð10Þ

The corresponding expressions for d ¼ 2 involve loga-
rithms and are given in the Supplemental Material [36]. It is
worth noticing that τ2ðr0Þ and τ1ðr0Þ, respectively, do and
do not depend on the convention and both are always
continuous at r0 ¼ rc. The sum of these quantities also
reproduces the MFPT obtained in Refs. [1] and [34]
when α ¼ 1.
For the homogeneous system, i.e., D1 ¼ D2 ¼ D, as

expected, there is no dependence on the convention and the
MFPT expression reduces to τðr0Þ ¼ T ðr0; a; R;DÞ, where

T ðr0; a; R;DÞ ¼ Rd

D
r2−d0 − a2−d

dð2 − dÞ −
r20 − a2

2dD
ð11Þ

gives the MFPT of a particle diffusing in a homogeneous
medium between absorbing (r ¼ a) and reflecting (r ¼ R)
concentric (hyper)spheres and starting at r0. This can be
used to write Eqs. (9) and (10) in a more compact form:

τ1ðr0Þ ¼ T ðr<; a; rc; D1Þ; ð12Þ
τ2ðr0Þ ¼ T ðr<; a; R;DeffÞ − T ðr<; a; rc; DeffÞ

þ T ðr>; rc; R;D2Þ; ð13Þ
where r< ¼ minðrc; r0Þ, r> ¼ maxðrc; r0Þ, and Deff ¼
Dα

1D
1−α
2 , i.e., the α-geometric mean of the diffusion

coefficients.
The residence time in R1 is exactly the MFPT of a

particle diffusing in a region of volume scaling as rdc − ad

with absorbing and reflecting boundaries at a and rc,
respectively, and starting from minðr0; rcÞ.
For r0 < rc, the residence time in R2 simply consists of

the difference between the MFPTs of a particle exploring
the entire system and the residence time in the first region
considering an effective diffusion coefficient Deff that
depends on the chosen convention. When r0 > rc, we

FIG. 2 (color online). Heat maps of the PDF for d ¼ 1, nðx; tÞ where x ¼ r=R, in a composite system with either D1 ¼ 1, x < xc and
D2 ¼ 10, x > xc (left column) or D1 ¼ 10, x < xc and D2 ¼ 1, x > xc (right column), where xc ¼ rc=R ¼ 0.5, for 106 different
trajectories, each starting at x0=R ¼ 0.2 for the Itō, Stratonovich, and isothermal conventions (from top to bottom). On the right of each
heat map is shown the likelihood of presence inR1 (green),R2 (blue), andR1∪R2 (red) as a function of time. The horizontal lines show
the values of the MFPT (red), τ1 (green), and τ2 (blue).
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can decompose τ2 into two effective steps: the particle
diffuses in R2 before reaching the interface at rc, then it
diffuses in a medium with the effective diffusion coefficient
Deff starting from rc.
Whatever the convention, τ1 is independent ofD2 [Eq. (8)

actually shows that this result remains valid whatever the r
dependence of the diffusion coefficient outside the first region
R1 is], while τ2 may depend on both diffusion coefficients
according to the convention. With the Itō convention τ2
does not depend on D1: the time spent in any region
does not depend on the diffusivity of the other region,
i.e., the diffusive explorations of the two regions can be
seen as independent. With the Stratonovich convention,
α ¼ 1=2, the geometric mean of the diffusion coefficients
appears in the expression of τ2. In general, the more
anticipating the jump in r� is, the more coupled the diffusive
explorations of the two regions is. In the extreme case
of the isothermal convention this leads to some puzzling
results.
First, as noted in Ref. [34], when α ¼ 1, τ2ðr0Þ, and

hence τðr0Þ, are independent of D2 if r0 ≤ rc, which could
mislead one into thinking that the MFPT is independent of
the outer region if the particle starts its diffusive movement
in region R1, i.e., close to the target. Actually, τ does
depend onR2 for two reasons, the most obvious one being
that Eq. (10) depends on the length of the total system. The
other is that the time spent in any subregion of R2, hence
τ2, is different from zero.
A physical explanation for this surprising result can be

obtained by considering the balance between transmission
of particles across the interface and the residence times (see
the Supplemental Material [36] for more details). For
example, particles attempting to pass from R1 to R2 when
D2 < D1 see an effective barrier and some are reflected
(while in the Itō case there is no reflection and all particles
enter R2) [11,43,44]. This partial reflection is exactly
compensated by the increased residence time of particles
that do enter R2.
Another remarkable property is that τ2 can be greater

than τ1 even when the particle starts infinitely close to the
target. For example, in one dimension with α ¼ 1 and
a ¼ 0, the ratio of residence times is τ2ðr0Þ=τ1ðr0Þ ¼
ðR − rcÞ=ðrc − r0=2Þ, which is larger than 1 for rc ¼
R=2 and 0 < r0 < rc.
More generally, let us define an interface position r�c such

that τ2 ≥ τ1 for any rc < r�c and any starting point (with the
equality applying in the limit r0 → a). It is straightforward
to show that r�c ¼ f½ad þ RdðD1=D2Þ1−α�=½1þ ðD1=
D2Þ1−α�g1=d.
For example, in a three-dimensional system with α ¼ 1,

a ¼ 0.1R, r�c ¼ 0.794R implying that, when rc < r�c, the
diffusing particle spends more time in R2 than R1 even if
the particle starts infinitesimally close to the target. If
α ≠ 1, rc can be located even further from the target when
D1=D2 > 1, while it must be closer whenD1=D2 < 1, e.g.,

r�c ¼ 0.969R and r�c ¼ 0.451R, respectively, for D1=D2 ¼
10 and 0.1 with α ¼ 1 (Itō convention).
In the isothermal convention (α ¼ 1) (or in the homo-

geneous case, D1 ¼ D2), r�c ¼ ½ðad þ RdÞ=2�1=d, dividing
the system into equal volumes. As d increases, r�c
approaches R. So counterintuitively in the isothermal case
with rc ¼ r�c, for a particle starting very close to the target, τ2
can still be larger than τ1 even ifD2 ≫ D1 and R ≫ a. This
implies that the particle spends a longer time in region R2,
which is very far from the target if a ≪ R and d > 1 (for
example, when amolecule is injected in a biological cell or a
tumor with the aim to reach a small target at its center).
It may be tempting at first sight to link the MFPTand the

residence times to the shape of the PDF of the particle for
times before the MFPT (marked in red in Fig. 2). However,
for example, for very small values of r0, the MFPT is
extremely small and the PDF remains localized around the
starting position during all this time. The probabilities of
presence in R1, R2, and R1∪R2, shown in Fig. 2, give
additional insight: although the proportion of time spent in
R1 is obviously significant at the beginning of the process,
the proportion of time spent in R2 becomes progressively
larger at long times, implying that rare events play an
increasingly dominant role in determining the MFPT. In
fact, the continuity of DðrÞ1−αnðr; tÞ in Eq. (3) creates an
imbalance between the time-dependent PDF of the two
regions, leading progressively to the appearance of a
probability maximum in R2 (see Fig. 2 and the movie
in the Supplemental Material [36]).
The analysis can be readily extended to anm-layer system.

One can show, for example, that if r0 ∈ R1 then τk depends
only on D1 and Dk. More generally, if r0 ∈ Ri then τk
dependsonly onDk andDi; i ¼ 1;…; jwhere j ¼ minði; kÞ.
Our theoretical results might be useful for experimen-

tally testing which convention is relevant for a particular
application, e.g., by measuring the MFPT or, better, the
time spent in any region between rc and R, it can be
possible to determine the correct convention that is needed
to model the experimentally investigated system.
Although restricted to spherically symmetric composite

systems, our study is relevant for a broad class of physical
and biological systems with heterogeneous diffusion. For
example, the diffusion of drug molecules inside tumors is
currently modeled as obeying Eq. (2) in a spheroidal,
layered structure with three principal layers: a necrotic core
surrounded by a shell of quiescent, hypoxic cells, and an
outer shell of proliferating cells [48,49]. Depending on the
cancerous cell density, the diffusion coefficient (of
nutrients, waste, or anticancer drugs) can differ from one
layer to another by a factor of 3 or more [50].
Two-dimensional stochastic models, with several layers

of different diffusivities, are also of great interest in the
study of protein diffusion in cellular cytoplasm [51,52], and
might help to understand their accumulation in low
diffusion membrane microdomains (e.g., lipid rafts) [53].
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Likewise, human displacements, search strategies, and
foraging of animals and insects in patchy environments
can be efficiently modeled with such two-dimensional
layered systems [54–58].
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