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We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting
circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2)
gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least
demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two
superconducting architectures that can host the quantum simulation, estimating the requirements needed to
run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian
physics with solid-state quantum platforms.
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Gauge invariance is a central concept in modern physics,
being at the core of the standard model of elementary
particle physics. In particular, invariances with respect to
SU(2) and SU(3) gauge symmetries characterize the weak
interaction and quantum chromodynamics [1,2]. In this
sense, gauge theories represent a cornerstone in our under-
standing of the physical world and lie at the heart of diverse
phenomena, such as the quark-gluon plasma or quantum
spin liquids. In condensed matter physics, SU(2) gauge
fields can also emerge dynamically in relation to exotic
many-body phenomena, like quantum Hall systems, frus-
trated magnets, or superconductors [3–5].
Lattice gauge theories (LGT) are nonperturbative dis-

crete formulations that contribute to the analysis of key
features of these models, such as color confinement or
chiral symmetry breaking. Starting from the seminal work
by Wilson in 1974 [6,7], LGT have attracted a significant
attention across several branches of theoretical physics. In
the last decades [8], quantum Monte Carlo simulations
have achieved unprecedented accuracies in determining the
whole hadronic spectrum of the standard model. However,
understanding its full phase diagram from first principles,
or simulating dynamical processes, remains out of reach of
current numerical computations.
Quantum simulators [9] provide a new approach to solve

complex long-standing problems in quantum physics. In a
quantum simulator, a proper encoding of LGT can allow for
the retrieval of information about ground state and dynam-
ics, in a wide range of regimes. Previous works have
considered Abelian [10–22] and non-Abelian LGT in
optical lattices [23–25] (see also Refs. [26,27] and refer-
ences therein), both as analog and digital simulations [28].
In these implementations, matter-gauge interactions are
modeled as a second-order process from Hubbard-like

interactions, while the simulation of pure-gauge dynamics
remains more demanding.
In the last years, superconducting circuits have proven to

be reliable devices that can host quantum information and
simulation processes [29]. The possibility to perform
quantum gates with high fidelities, together with high
coherence times, makes them ideal devices for the reali-
zation of digital quantum simulations [30–34], previously
considered in ion-trap systems [35–37].
In this Letter, we propose a digital quantum simulation of

a non-Abelian dynamical SU(2) gauge theory in a super-
conducting device. We start by building a minimal setup,
based on a triangular lattice, that can encode pure-gauge
dynamics. The degrees of freedom of a single triangular
plaquette of this lattice are encoded into qubits. We propose
two implementations of this quantum simulator, using two
different superconducting circuit architectures, as depicted
in Fig. 1. We consider a setup in which six tunable-coupling
transmon qubits are coupled to a single microwave reso-
nator, and a device where six capacitively coupled Xmon
qubits stand on a triangular geometry, coupled to a central
auxiliary one. We compute experimental requirements
necessary to perform the simulation on one plaquette,
and provide arguments for scaling to large lattices.
Lattice gauge theories.—LGTare discretized versions of a

gauge theory. In a conventional approach of lattice gauge
theories, space-time is discretized while ensuring a covariant
formulation of the theory. In quantum simulations, there is no
direct access to the time direction, which is fixed and
continuous. Hence, the equivalent Hamiltonian formulation
of lattice models is used. In this case, the space is discretized
and the action of a local gauge invariant Hamiltonian
characterizes a continuous dynamical evolution. This ficti-
tious asymmetry of the time direction forces us to define a
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physical Hilbert space or Gauss law of the model. We make
use of a set of discretized space points ~x, and SUðNÞ
operators uð~x; μ̂Þ associated to each link, connecting two
adjacent sites ð~x; ~xþ μ̂Þ. A single uð~x; μ̂Þ operator has two
implicit color indices ðα; βÞ, uαβ, that connect the αth
component of the fermionic field at position ~x with the
βth component of the field at position ~xþ μ̂.
In order to construct a non-Abelian SUðNÞ theory built

out of these uð~x; μ̂Þ operators, one has to build a Hamiltonian
that is invariant under a generic gauge transformation

uð~x; μ̂Þ → eiθ
að~xÞτauð~x; μ̂Þe−iθað~xþμ̂Þτa ; ð1Þ

where τa are the ðN2 − 1Þ generators of the SUðNÞ algebra in
the corresponding representation, and θa the relative phase
angles. It is straightforward to verify that the following
Hamiltonian on a square lattice is gauge invariant

H¼ J
X
~x

Tr½uð~x; μ̂Þuð~xþ μ̂; ν̂Þu†ð~xþ ν̂; μ̂Þu†ð~x; ν̂Þ�þH:c:;

ð2Þ

where the trace is performed over the color indices, J has
energy units, and the directions μ̂ and ν̂ span the two-
dimensional lattice. ThisHamiltonian is a puregauge operator,
as it does not involve any fermionic operator and it is the
minimum instance of aWilson loop around a plaquette [1,2].
We focus now on the construction of a non-Abelian

SU(2) quantum link model that mimics this gauge-invariant
behavior in a finite-dimensional Hilbert space, suitable for
quantum simulations. Notice that the framework of the
quantum link models is valid for any compact Lie group
[38]. We use a four-dimensional Hilbert space or,

equivalently, two qubits associated with each link.
One can define link operators Uð~x; μ̂Þ acting on this four-
dimensional Hilbert space with the associated gauge gen-
erators Gað~xÞ that satisfy the SU(2) algebra

½Gað~xÞ; Gbð~yÞ� ¼ iδ~x ~y
X
c

ϵabcGcð~xÞ: ð3Þ

To define the set of operators, we use a quantum link
formulation [38], where the Hilbert space of a link is given
by a set of bosonic modes cαjð~x; μ̂Þ that implement the
Schwinger representation of the SU(2) algebra, with
α ∈ f↑;↓g, acting on two different sites j ∈ fL;Rg on the
link between the two adjacent vertices ~x and ~xþ μ̂. In this
space, we build two sets of right and left generatorsRa,La, on
this finite-dimensional Hilbert space, using the bosonicmodes
cαjð~x; μ̂Þ [39]. We define the gauge generators as Gað~xÞ ¼P

jν̂jLað~x; ν̂Þ þ Rað~x − ν̂; ν̂Þ, where the sum over jν̂j is taken
among all the links of the lattice converging to a single
vertex ~x.
The representations of SUð2Þ are quasireal, therefore,

ordinary and their dual representations (i.e., particle and
antiparticle) are equivalent. Therefore, there are two mul-
tiplets with well-defined SU(2) transformations [39]. One
can finally define the link operators, acting on the finite-
dimensional Hilbert space of one link, in terms of
Schwinger bosons on a given link [47–49],

Uαβ ¼
� c↑L −ic†↓L
c↓L ic†↑L

��
c†↑R c†↓R
ic↓R −ic↑R

�
: ð4Þ

These operatorsU have the following commutation rules
with the left and right operators

½Uð~y; ν̂Þ; Rað~x; μ̂Þ� ¼ −Uð~y; μ̂Þ σ
a

2
δ~x ~yδν̂ μ̂;

½Uð~y; ν̂Þ; Lað~x; μ̂Þ� ¼ σa

2
Uð~y; μ̂Þδ~x ~yδν̂ μ̂; ð5Þ

where we have defined the usual Pauli matrices σa, see also
Ref. [39], while σ0 is defined as the identity operator. The
commutation rules for a general gauge transformation
follow in a straightforward way,Y

~y

e−iθ
að~yÞGað~yÞUð~x; μ̂Þ

Y
~z

eiθ
að~zÞGað~zÞ

¼ eiθ
að~xÞðσa=2ÞUð~x; μ̂Þe−iθað~xþμ̂Þðσa=2Þ; ð6Þ

where the products over ~y and ~z are extended over the
whole lattice. This equation shows that quantum link
models are formulations of gauge-invariant models. In
fact, one can notice how the action of a gauge trans-
formation in Eq. (6) mimics Eq. (1).
A generic state in the local Hilbert space

jn↑L; n↓L; n↑R; n↓Ri of a quantum link is given by the

occupation of the operators c†↑ð↓Þ;RðLÞ. Since the total

(c)

1

23

Side 1

Side 2Side 3

1 2 3

(a)

(b)

FIG. 1 (color online). (a) Six tunable-coupling transmon qubits
coupled to a single microwave resonator. (b) Six Xmon qubits on
a triangular geometry, coupled to a central one. The box 1 in the
scheme is implicitly repeated for the sides 2 and 3. Both setups
can encode the dynamics of the SU(2) triangular plaquette model
schematized in (c), where the left and right gauge degrees of
freedom are explicitly depicted.
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occupation per link, n↑L þ n↓L þ n↑R þ n↓R, is a constant
of motion [see Eq. (4)], we restrict to the subspace with one
occupied mode per link.
Notice that matter-gauge interactions in 1þ 1 dimen-

sions can be derived [39] in a second-order perturbation
theory, considering extensions of previous works [50,51].
In the following, we will focus instead on pure-gauge two-
dimensional interactions.
Triangular lattice.—The continuum limit of quantum

link models and their thermodynamical properties are
topics under active research. In related condensed matter
models, the importance of the lattice geometry has been
shown in the fundamental aspect of the phase diagram, as
the existence of confinement and deconfinement phases
[52,53]. Quantum simulations on large lattices may provide
insights on the continuum limit of LGT, and its dependence
on the geometry of the underlying lattice. In this spirit, we
consider a minimal implementation of a pure SU(2)
invariant model in a triangular lattice, by using triangular
plaquettes, as depicted in Fig. 1(c). In this case, the pure-
gauge Hamiltonian on a single plaquette reads

HT ¼−JTr½Uð~x; μ̂ÞUð~xþ μ̂; ν̂ÞUð~xþ μ̂þ ν̂;−μ̂− ν̂Þ�: ð7Þ

This interaction corresponds to the magnetic term of a
gauge invariant dynamics, which acts on closed loops. We
focus on the magnetic term, since the representation of the
electric counterpart is trivial.
Since this Hamiltonian commutes with gauge generators,

½HT;Gað~xÞ� ¼ 0∀ ~x, a, these are constant of motion, and
one can define different gauge sectors with the initial values
of the generators. Because of the triangular geometry and
having one occupiedmode per link, there are no global states
that have zero eigenvalue for the gauge generators Gað~xÞ at
every vertex in a single plaquette. In general, the absence
of the zero-eigenvalue sector depends on the topology
of the lattice, and is avoided, for example, in the periodic
lattice of Fig. 2(d). The different gauge sectors can be

characterized by the eigenvalues of the operator
P

~x
~G2ð~xÞ ¼P

~x

P
a½Gað~xÞ�2, as in Figs. 2(a), 2(b), and 2(c); see the

Supplemental Material for additional details [39].
The local Hilbert space of a link is four dimensional, and

it can be faithfully spanned by two qubits, called “position”
σapos and “spin” qubit σam. In this subspace, it is useful to
define the operators Γ0 ¼ σxposσ

0
m, Γa ¼ σyposσam, such that

the total Hamiltonian is written as [39]

HT ¼−J
�
Γ0
12Γ0

23Γ0
31þ

X
abc

ϵabcΓa
12Γb

23Γc
31

−
X
a

½Γ0
12Γa

23Γa
31þΓa

12Γ0
23Γa

31þΓa
12Γa

23Γ0
31�

�
: ð8Þ

Superconducting circuit implementation.—In order to
simulate the interaction of Eq. (8), one can decompose its

dynamics in terms ofmany-bodymonomials, and implement
them sequentially with a digitized approximation [54]. In a
digital approach, one decomposes the dynamics of a
HamiltonianH ¼ P

m
k¼1 hk by implementing its components

stepwise, e−iHt ≈ ðQm
k¼1 e

−ihkt=NÞN (here and in the follow-
ingℏ ¼ 1), for a total ofm × N gates, with an approximation
error that goes to zero as the number of repetitions N grows.
In a practical experiment, each quantum gate e−ihkt will be
affected by a given error ϵk. By piling up sequences of such
gates, for small gate errors ϵk ≪ 1, the total protocol will be
affected by a global error, which is approximately the sum
ϵ ≈

P
kϵk. This model for error accumulation has been

proved in recent experiments [32,33].
The effects of digitization in the simulation of LGT can be

observed in Fig. 3. We have numerically integrated a
Schrödinger equation regulated by the Hamiltonian in
Eq. (8), choosing as the initial state one of the 12 states
shown in Fig. 2(a), for different simulated phases ϕ ¼ Jt
[39]. We compute both the evolution with the ideal
Hamiltonian and with a digital sequence, in which we act
with a single monomial at a time, repeating the protocol N
times. As a figure of merit, we compute the relative deviation

E ¼ ðhP~x
~G2ð~xÞiI − hP~x

~G2ð~xÞiDÞ=h
P

~x
~G2ð~xÞiI from the

ideal value of the gauge invariant, where hiIðDÞ stand for
average values computed on the ideal (digitally simulated)
state. The deviation goes to zero for largeN and small phases,
defining surfaces at given error tolerance in theN − ϕ space.
To simulate the pure-gauge interaction in a single

triangular plaquette, we first consider a setup in which
six tunable-coupling transmon qubits are coupled to a
single microwave resonator [55,56]. Each tunable-coupling
qubit is built using three superconducting islands, con-
nected by two SQUID loops. Acting on these loops with
magnetic fluxes, one can modify the coupling of the qubits

(a) (b) (c)

(d)

FIG. 2 (color online). (a), (b), and (c) Different gauge invariant
sectors for a triangular plaquette, together with the sector
degeneracy and the action of the Hamiltonian HT upon them.
(d) Extended lattice with periodic boundary conditions. This
lattice allows for the

P
xG

2ðxÞ ¼ 0 sector.
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with the resonator, without changing their transition
frequencies. For further clarifications of the experimental
setup involving tunable-coupling transmon qubits, see the
Supplemental Material [39]. By threading with magnetic
fluxes at high frequencies, one can drive simultaneous red
and blue detuned sidebands, and perform collective gates
[57]. Each many-body operator can be realized as a
sequence of collective and single-qubit gates,

UN ¼ eiðπ=4Þ
P

i<j
σxi σ

x
j eiϕσ

z
1e−iðπ=4Þ

P
i<j

σxi σ
x
j ; ð9Þ

where the indices i and j run from 1 to N. In this way, one
can implement a generic (up to 2N local rotations) N-body
evolution operator UN ≡ e−iϕσ

m
1
σn
2
���σkN , with fm; n;…kg ∈

fx; y; zg, using 2 collective gates, and a number of single
qubit gates, which are upper bounded by 2N þ 1, counting
the single qubit gate in Eq. (9) and the 2N rotations
necessary to map UN to any N-body operator. The
simulation for one digital step will amount to implementing
32 collective gates and a number of single qubit gates
which are upper bounded by 184 [39].
We consider now the architecture of Fig. 1(b), inwhich six

Xmon qubits in a triangular geometry are capacitively
coupled with an additional central ancillary qubit [58]. In
this case, the collective interactions UN can be decomposed
and performed with pairwise controlled-PHASE gates, using
the central ancillary qubit to mediate non-nearest inter-
actions. In this way, the quantum simulation of one digital
step of the Hamiltonian in Eq. (8) will amount to realize 168
controlled-PHASE gates and a number of single-qubit rota-
tions which are upper bounded by 520. For additional details
on the experimental setup and gate counts, see Ref. [39].
To estimate the effects of experimental imperfections on

the simulations, we plot in Fig. 4 the dynamics of a single

plaquette, starting from a
P

x
~G2
x ¼ 9=4 state. The observed

periodic dynamical oscillations between the two paired

states, depicted in Fig. 2(b), are signaled by the periodic
behavior of the overlap jhΨIjΨ0ij2. The simulation is run for
N ¼ 2 and N ¼ 3 steps, necessary to observe one flip
between the two states and one full oscillation, respectively.
On top of these oscillations, we plot fidelity bands that
estimate the fidelity cap due to accumulated gate errors in the
digital protocol, in the case of the two presented setups in
Fig. 1, with collective and two-qubit gates. In order to see
coherent oscillations, the fidelity of the two-body gates has to
be 1 order of magnitude better with respect to the collective
ones, with an error window of approximately 0.05%–0.01%
in the collective gate case and a 0.005%–0.001% for the
controlled-PHASE gate setup.We assume a factor 1=20 for the
error loss on a single qubit gate. From the plots, it can be seen
that, while the digital fidelity jhΨIjΨDij2 increases, the
fidelity bands due to experimental errors broaden, affecting
the simulation. The intersection of the digital fidelity line
with the bands marks a regime dominated by experimental
imperfections for small ϕ, and one in which the error of the
digital expansion prevails for large ϕ.
The proposed simulation can be extended to larger

lattices, where one could analyze dynamical properties
of the confinement-deconfinement phase transition, which
can be traced back to the breaking of the global center
symmetry [59] in groups with a nontrivial center group, like
the SU(2) case. Moreover, such a LGT simulator can be
used to perform quench experiments in a ladder configu-
ration, analyzing breaking of gluon strings between pairs of
particles and antiparticles [60–62].

FIG. 3 (color online). The relative gauge deviationof the digitally
simulated gauge value (hiD), versus the ideal value (hiI), E ¼
ðhP~x

~G2ð~xÞiI − hP~x
~G2ð~xÞiDÞ=h

P
~x
~G2ð~xÞiI , as a function of the

digital stepsN and the simulated phaseϕ ¼ Jt. The error decreases
with large N, and small ϕ. The contour plot is interpolated from
numerical data at N ¼ f1; 2; 3; 4g. The initial state is chosen as
depicted in Fig. 2(a).
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FIG. 4 (color online). Digital quantum simulation of pure gauge
dynamics for (a) 2 and (b) 3 digital steps. The initial state jΨ0i is
chosen as in Fig. 2(b). Periodic oscillations between the position
and qubit degrees of freedom at the vertices are witnessed by
jhΨIjΨ0ij2. The theoretical fidelity jhΨI jΨDij2 increases with the
number of digital steps, together with the width of the fidelity
bands due to experimental imperfections.
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In order to scale the quantum simulation to large qubit
lattices, one has to consider that the accumulated gate error
does not depend on the size of the lattice [32,33], and only
on the number of gates. The quantum resources necessary
to run the simulation scale polynomially in the lattice size,
and subpolynomially in the digital error [63], making the
whole protocol efficient. With a current total number of
gates that exceeds 1000 [32,34], we believe that in the near
future simulations of LGT on large scales will be feasible.
Furthermore, the possibility of performing quantum error
correction for digital quantum simulations may drastically
increase its effectiveness [64].
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