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In ferromagnets, magnons may condense into a single quantum state. Analogous to superconductors,
this quantum state may support transport without dissipation. Recent works suggest that longitudinal spin
transport through a thin-film ferromagnet is an example of spin superfluidity. Although intriguing, this
tantalizing picture ignores long-range dipole interactions; here, we demonstrate that such interactions
dramatically affect spin transport. In single-film ferromagnets, “spin superfluidity” only exists at length
scales (a few hundred nanometers in yttrium iron garnet) somewhat larger than the exchange length. Over
longer distances, dipolar interactions destroy spin superfluidity. Nevertheless, we predict the reemergence
of spin superfluidity in trilayer ferromagnet-normal metal-ferromagnet films that are ∼1 μm in size. Such
systems also exhibit other types of long-range spin transport in samples that are several micrometers in size.
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When matter enters a superfluid phase, it behaves similar
to a fluid with zero viscosity and can support currents
without dissipation. Some ferromagnets have been sug-
gested to exhibit spin superfluidity (SSF) [1–3]. The
superfluid spin-drag properties induced by spin transfer
and spin pumping (SP) in a normal metal-ferromagnet-
normal metal system have recently been computed [4–6].
Related studies have also explored Josephson spin currents
between magnon condensates [7]. Experimental studies
have suggested that the temporal decrease of magnon
condensates is associated with SSF [8].
In the absence of magnetic fields, SSF is indeed an

intriguing possibility because its realization would allow
spin currents to propagate without significant losses over
long distances. These spin transport properties may be
useful for low-dissipation interconnects, spin logic devices,
and nonvolatile magnetic memory devices. Our work
demonstrates that SSF can exist in thin-film ferromagnetic
systems, but two ferromagnets (rather than one) are
required to cancel long-range dipole interactions. We do
not observe signatures of long-range SSF in single-film
ferromagnets.
Recent works have hypothesized that easy-plane ferro-

magnetic thin films exhibit SSF. In this case, the out-of-
plane component of the magnetization direction, mz, is
proportional to the SSF density. The canonically conjugate
variable is the in-plane angle, ϕ. In the absence of Gilbert
damping, the coupled hydrodynamic equations are analo-
gous to the Josephson relations, _mz ∼∇2ϕ and _ϕ ∼mz.
As in a superfluid, the spin waves then exhibit a linear
soundlike spectrum [3,4]. The solution to the hydrody-
namic equations is a magnetization that performs full 2π
rotations with the precession frequency Ω around the z axis
and has a small, constant mz ∝ Ω, which depends on the
details of the experimental setup. This metastable state
carries a spin current, Jsz ∝ −∇ϕ, and has topological

properties that protect against dissipation [3]. Spin relax-
ation induces a finite resistance proportional to the system
size [4]. Nevertheless, ferromagnetic insulators (FIs) have
exceptionally low spin dissipation rates, and the spin super-
current decays over a large length scale. Furthermore,
the spin-relaxation-induced algebraic decay of the spin
supercurrent significantly differs from the exponential decay
of the spin current carried by spin waves [9]. Although
magnetic anisotropy destroys the linear SSF response,
the spin current is predicted to flow with negligible dis-
sipation when the bias is sufficiently large [4,5].
Long-range dipole interactions are known to dramati-

cally affect the spin-wave dispersion in thin films [10,11].
Low-energy magnons strongly interact, and the coupling
between them decreases algebraically as they spatially
separate. Magnon interactions are equally important for
Bose-Einstein condensation [12]. In the previous theoretical
investigations of SSF presented in Refs. [1–6], the dipole
field was included as an easy-plane anisotropy. However,
the dipole interaction also has a dynamical component that
was not included in Refs. [1–6]. Considering that it is the
long-range nature of this component that qualitatively
changes the dispersion of magnons [10], it is natural to
expect that dipole interactions also affect the SSF strongly.
When the system is smaller than the exchange length, the
energy associated with the exchange stiffness dominates,
and the system may exhibit SSF. However, the exchange
length in FIs, such as yttrium iron garnet (YIG), is ∼20 nm,
and dipole interactions become increasingly important at
larger length scales. For SSF to be useful, it must exist over
long, hopefully macroscopic, length scales.
In this Letter, we investigate the complete effect of

dipole interactions on spin transport through a FI thin film.
We consider both square and circular devices (Fig. 1).
As expected, dipole interactions completely alter the spin-
transport properties. We find that “SSF” can only be
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achieved when the system size is on the order of the
exchange length, which implies that SSF is not a useful
method for spin transport across sizable distances. For
example, in YIG, which is a widely used FI because of its
low dissipation, SSF occurs only across distances of a few
hundred nanometers. In comparison, typical spin-wave
propagation lengths may reach ∼5 mm [13]. Moreover,
because of dipole-induced anisotropies, a sufficiently high
spin-accumulation bias is required to induce a spin current.
As with the spin resistance across the sample, this spin-
accumulation threshold strongly depends on the geometry
of the system and increases with the system size.
Nonetheless, the concept of SSF in ferromagnetic

systems remains useful, although not in single films, as
previously envisaged. Instead, we propose a trilayer struc-
ture. Exchange coupling between two FIs’ magnetizations
via a normal metal can secure an antiparallel configuration.
We demonstrate that such synthetic antiferromagnets main-
tain long-range SSF over distances much greater than
the exchange length. We also show that even when the two
films differ, a spin supercurrent and, ultimately, a long-
range non-SSF spin current can flow over sufficiently long
distances in typical realizations.
The setup in Ref. [4] nicely illustrates SSF behavior. The

spin Hall effect (SHE) leads to spin injection. In turn, spin-
transfer torque (STT) causes the magnetization to precess,
thereby leading to SP out of the opposite contact detected
via the inverse SHE. This geometry therefore requires the
contacts to be attached to the thin sides of the FI. The
resulting resistance per area can be expressed in the form of
an Ohm’s law combining the interface resistances and an
internal resistance,

r ¼ 1=g⊥L þ 1=g⊥R þ rα; ð1Þ

where g⊥L and g⊥R are the transverse interface spin con-
ductances, and the internal spin-relaxation-induced resis-
tance is rα ¼ gα=ðg⊥Rg⊥L Þ, where gα ¼ 2e2MsLα0=ℏ2γ.
Here, Ms is the saturation magnetization, α0 is the intrinsic
Gilbert damping coefficient, γ is the gyromagnetic ratio,
and L is the system length. The system exhibits SSF
because the internal resistance rα vanishes when α0 → 0.
With spin dissipation, the internal resistance increases
algebraically with the length of the system.
To further utilize SSF, we suggest using a larger injection

area with a spin valve attached to the top of the FI; see
Fig. 1(a). Ignoring dipole interactions, Ohm’s law [Eq. (1)]
remains valid, but the intrinsic conductance becomes

gα ¼
4πMsVα0
ℏγAc

e2

h
; ð2Þ

where V is the FI volume andAc is the injection or detection
contact area. One can hence conclude that the SSF can be
made arbitrarily long range by increasing the contact area
in proportion to the system volume. Without dipole inter-
actions, the SSF is limited only by the contact conductances,
and a spin current can flow over macroscopic lengths.
However, as discussed below, dipole interactions dramati-
cally reduce the applicability of this finding.
In the geometry employed herein, a spin current is

injected using the left contact (L), which consists of a
spin valve with two ferromagnets, FL;1=2, that exhibit
perpendicular magnetic anisotropy and are coupled to a
normal metal, NL; see Fig. 1(a). Assuming an effective
conductance across the NLjFI interface, ~gFI, and low spin
memory loss in NL, we find that the injected spin
accumulation in NL, μL ¼ μLẑ, is μL ¼ eViðg↑ − g↓Þ=
ðg↑ þ g↓ þ ~gFIÞ [14]. Here, g↑ð↓Þ is the conductance of
the majority (minority) electrons across the two FL;1=2jNL
interfaces. This spin accumulation then drives the FI
dynamics of the local magnetization direction, mðr; tÞ, at
position r and time t. The spin angular momentum trans-
ported through the FI thin film is subsequently detected by
the right contact (R), which consists of a normal metal, NR,
connected to a ferromagnet, FR. The spin accumulation
pumped into NR is, in the limit of low spin-memory loss,
μRðrÞ ¼ −ℏm × _mjr∈R and can be measured according to
the voltage, Vd, across the NRjFR junction.
At low temperatures, SSF can be described semiclassi-

cally [3–6] and the magnetization dynamics are given by
the Landau-Lifshitz-Gilbert (LLG) equation,

_m ¼ −γm ×Heff þ αm × _m − α0m ×m × μ=ℏ; ð3Þ

where, in the left (right) contact region, the spin accumu-
lation μ ¼ μLðRÞ and α0 ¼ αLðRÞ; both quantities are
zero otherwise. The dimensionless parameter αLðRÞ ¼
g⊥LðRÞℏ2γ=2e2Msd, where d is the FI thickness. The local

FIG. 1 (color online). (a) A square FI thin film in contact
with a spin injector (top left) and a spin detector (top right).
A bias voltage Vi injects a spin current via a lateral spin valve in
which the ferromagnetic leads have a perpendicular magnetic
anisotropy. SP from the FI thin film into the detector induces a
voltage Vd. (b) The width of the contacts, w, is 20% of the total
length of the FI sample, L. (c) A circular disk with diameter D.
The spin injection and detection contacts each cover 20% of the
disk area.
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Gilbert damping coefficient is α ¼ α0 þ α0, where α0 is the
spin-pumping enhancement. The effective field, Heff ,
consists of the exchange field,Hex ¼ 2A=ðMsÞ∇2m, where
A is the exchange constant, and the dipole field, Htot

dip,
which fulfills Maxwell’s equations in the magnetostatic
approximation,

∇ ×Htot
dip ¼ 0; ∇ · ðHtot

dip þ 4πMsmÞ ¼ 0: ð4Þ
The dipole field is related to the local magnetization by
Green’s functions: Htot

dip ¼ 4πMs

R
V d

3r0Ĝðr − r0Þmðr0; tÞ,
where Ĝ is a 2nd-rank tensor whose elements are Gαβ ¼
−ð1=4πÞ∂2

αβ0 ð1=jr − r0jÞ [15]. We consider a FI thinner than

the magnetic exchange length, d≲ lex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=2πM2

s

p
, such

that any variation of m across the thickness is negligible.
Then, one can divide the total dipole field into an easy plane
term, HEP ¼ −4πMsmzẑ, and the remainder of the dipole
field, Hdip.
The dipole field Hdip causes the spin-wave eigen-

spectrum to depend strongly on the spin-wave propa-
gation direction relative to the magnetization [11]. At
long wavelengths and no applied magnetic field, spin
waves propagating with wave vectors k∥ð⊥Þ parallel
(perpendicular) to the magnetization are exchange (dipole)
dominated, and their frequency is ωðk∥Þ ¼ γk∥

ffiffiffiffiffiffiffiffiffi
8πA

p
(ωðk⊥Þ ¼ 4πMsγ

ffiffiffiffiffiffiffiffiffiffiffi
2k⊥d

p
). Because SSF is associated with

the steady-state solutions of Eq. (3) in which the magneti-
zation performs 2π precessions, the relative orientation of
the transport direction and the magnetization alternates
between the exchange- and dipole-dominated regimes.
Nonlocal dipole interactions are therefore critically impor-
tant. However, the full inclusion of these interactions
transforms the LLG equation [Eq. (3)] into a complicated
second-order nonlinear integro-differential equation in time
and in-plane coordinates, and thus, finding its solution
requires considerable numerical efforts. For this purpose,
we performed graphics processing unit (GPU)-accelerated
micromagnetic simulations on several computers over a
long time period [16].
We first consider a square YIG thin film. This geometry

creates two dipole-induced easy axes that extend diagonally
across the sample in addition to the easy plane anisotropy.
The injection and detection contacts cover 20% of the thin
film’s surface area, as shown in Fig. 1(b). Hence, the ratio
Ac=V ¼ 1=ð5dÞ that controls the internal conductance
[Eq. (2)] is independent of the length L. We further neglect
any spin-memory loss inside the contacts because of
the long spin-diffusion length of the Cu contacts, lCusf ¼
100–1500 nm [17]. In line with typical transverse (mixing)
conductance values [18,19] for CujYIG interfaces, we
choose g⊥L=Rh=e2 ¼ 5 × 1014 cm−2, which, combined with
dYIG ¼ 5 nm, yields αL=R ≈ 0.01. We also use 4πMs ¼
1750 G [11], A ¼ 3.7 × 10−7 erg=cm [20], and α0 ¼ 1 ×
10−3 [18,19]. Typical values for the tunnel conductances

for perpendicularly magnetized spin valves [21], g↑h=e2 ∼
1011 cm−2 and g↓h=e2 ∼ 1010 cm−2, give an applied volt-
age for the left contact of Vi ∼ 10 mV, which corresponds
to μL ∼ 1 μeV. This applied voltage produces a current
density of 104 Acm−2. The NRjFR interface is similarly
assumed to be a tunnel interface; therefore, the SP current
across the FIjNR is compensated by the STT generated
by μR. Generally, μR contains both ac and dc components.
We denote the z component of the dc spin accumulation
in the right contact averaged over the contact area by hμzRi
and investigate its behavior as a function of μL and the
system size.
In the micromagnetic simulations, we start in a uniform

state and let this state evolve into a steady state; see
Fig. 2(a). Figures 2(b) and 2(c) show the steady-state spin
accumulation hμzRi as a function of μL and L, respectively.
A finite hμzRi can be observed only above a threshold μthrL in
panel (b). From Fig. 2(c) this threshold can be seen as a
sudden drop of hμzRi as a function of L. The threshold is
attributed to shape-induced pinning of the magnetization,
and it can be seen to rapidly increase from μthrL ¼ 1 μeV at
L ∼ 300 nm to μthrL ¼ 5 μeV at L ∼ 350 nm. When the
threshold is overcome, hμRz i increases linearly with μL and
is a constant function of L, as expected based on Eq. (2).
Consequently, the transport in this region is identified as
SSF. When the μL is increased further, hμRz i saturates. This
saturation is caused by the interplay of the shape anisotropy
and nonlocal magnon-magnon interactions. For large
systems, this interaction is more efficient because of the
reduced spin-wave energy separation. The saturation of
hμzRi is analogous to the leveling off of the cone angle in a
ferromagnetic resonance (FMR) experiment as a function
of applied power because of magnon-magnon-interaction-
mediated Suhl instabilities: when the cone angle of the
FMR mode reaches a critical value, spin waves are excited

FIG. 2 (color online). (a) Time evolution of μzR when
L ¼ 250 nm and μL ¼ 3.0 μeV. (b) The average dc spin accu-
mulation in the right contact, hμzRi, as a function of the spin
accumulation in the left contact, μL, in samples with fixed
lengths, L, and square geometries. (c) hμzRi as a function of L.
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and power is lost from the FMR mode to the spin waves
[22,23]. The onset of the hμRz i saturation is observed to
occur at a lower value μsatL for increasing L, from μsatL ∼
5 μeV at L ¼ 150 nm to μsatL ∼ 3 μeV at L ¼ 250 nm.
Because μsatL decreases with increasing L, the interval
in which SSF is possible, μthrL < μL < μsatL , shrinks with
increasing L until μsatL < μthrL . This “squeezing” effect
restricts SSF to samples for which L < 300 nm.
Next, we analyze FI thin films with circular geometries,

see Fig. 1(c). Such high-symmetry structures are chosen
because the absence of an easy axis leads to much longer
spin-current propagation lengths. Figures 3(a) and 3(b)
show hμzRi as a function of μL and diameterD, respectively.
The squeezing effect described above is observed but now
with μthrL ¼ 0. At D ¼ 500 nm, hμzRi follows the SSF result
only for μL ≤ 1 μeV. For larger μL or D, spin transport
persists, even for micron sized disks, but is less efficient
(and shows larger resistance) than SSF [Eq. (2)].
Finally, we demonstrate that long-range SSF can be

recovered in a synthetic antiferromagnet structure. When
two FI thin films are in contact via a thin normal metal,
RKKY interaction can lead to antiferromagnetic exchange
coupling between the two layers [24]. In the absence of an
external magnetic field, the ground state has an antiparallel
configuration with zero net magnetization. Dipolar inter-
actions are then suppressed over distances longer than the
trilayer thickness and only the easy-plane anisotropy term
survives in the thin-film limit.
By applying spin accumulation to the top FI in the same

manner as for the single-layer FI, one can induce a rotation
of the FIs’ magnetizations that maintains the net magneti-
zation near zero. Under steady-state conditions, the SP
current that flows from FI1 into the spacer layer is exactly

compensated by the SP current that flows from FI2, thereby
resulting in a vanishing SPþ STT torque, and vice versa.
Hence, the RKKY interaction dominates the interlayer
interaction. Writing the magnetizations as m1=2ðr; tÞ ¼
ð�½1−m2

1=2;z�1=2 cosϕ1=2;�½1−m2
1=2;z�1=2 sinϕ1=2;m1=2;zÞ,

and assuming that ðm1;2Þz ≪ 1 and jϕ1 − ϕ2j ≪ 1, the SSF
hydrodynamic equations for the first layer are

_m1;z ¼
2γA
Ms;1

∇2ϕ1 − α1 _ϕ1;

_ϕ1 ¼ ½4πMs;1γ þ ωE;1�m1;z þ ωE;1m2;z þ α1 _m1;z: ð5Þ

(For layer 2, interchange 1↔2.) Here, Ms;1ð2Þ is the
saturation magnetization of layer 1(2) and α1 ¼ α0;1 þ α01,
where α0;1 is the intrinsic Gilbert damping in FI1 and α01 ¼
αLðRÞ under the left (right) contact area and zero otherwise.
FI2 is not attached to any external contacts, i.e., α02 ¼ 0, and
the damping is dominated by the layer’s intrinsic Gilbert
damping, α2 ¼ α0;2. The strength of the RKKY interaction
is parameterized by ωE;1ð2Þ [25]. The left and right contacts
are attached to layer 1 and provide additional STT and SP,
as in the single-layer cases.
For small values of μL, the spatial variation of m1=2 is

small. Assuming symmetric layers, i.e.,Ms;1 ¼ Ms;2 ¼ Ms,
α0;1 ¼ α0;2 ¼ α0, and ωE;1 ¼ ωE;2 ¼ ωE, we obtain

hμzRi ¼ −ℏΩ ¼ g⊥L
g⊥L þ g⊥R þ gα

μL; ð6Þ

mz ¼ −Ω=ð2ωE þ 4πMsγÞ, and ðϕ1 − ϕ2Þ ∼ α2Ω=ωE,
where gα is the intrinsic conductance defined in Eq. (2)
with the substitution α0 → α0;1 þ α0;2. Equation (6) can be
identified as Ohm’s law, Eq. (1).
Figure 3(c) shows the exact numerical result for hμzRi as a

function of μL for a trilayer structure composed of two
disks, each with a thickness of dYIG ¼ 5 nm and a coupling
ωE ¼ 7.3 × 1010 s−1, where the dipole interaction is fully
included. The detector signal is close to the ideal value
given by Eq. (6), even for micrometer-sized systems.
Saturation also occurs in trilayer systems but at much
higher values of μL than for single-layer films; despite the
relatively large variations in ϕ, SSF remains stable because
of screening of the dipole interactions. Figure 3(d) shows
that spin transport is possible over much greater distances
in trilayer structures than in single-layer ones: the single-
layer hμzRi exhibits a 75% spin-signal reduction over the D
interval 0.1–2.0 μm, whereas the trilayer only exhibits a
25% reduction over the same interval and a 50% reduction
at D ¼ 4 μm. The SSF is robust against small variations in
the FI layer properties; see Fig. 3(d). Our results demon-
strate that trilayer structures are able to support SSF
currents for system sizes up to ∼1 μm and long-range
spin transport across samples that are several micrometers
in size.

FIG. 3 (color online). The average dc spin accumulation in
the right contact, hμzRi, as a function of (a) μL and (b) D for a
disk-shaped thin film. hμzRi as a function of (c) μL and (d) D for
disk-shaped trilayer samples for symmetric trilayer structures
with Ms;1=2 ¼ Ms (circles) and asymmetric layers with Ms;1=2 ¼
ð1� 0.1ÞMs (triangles). The solid red lines in (a) and (c) represent
the theoretical SSF values of hμzRi.
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In summary, we have investigated SSF in FI thin films.
The dipole field qualitatively alters the transport properties
so that single-layer SSF is possible only in systems that are
less than a few hundred nanometers in size. Suppression of
the dipole field in trilayer structures enables long-range
spin transport mediated by SSF over length scales up to
∼1 μm and by non-SSF magnetization dynamics over
length scales up to several micrometers.
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