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The Kondo effect is a ubiquitous phenomenon appearing at low temperature in quantum confined
systems coupled to a continuous bath. Efforts in understanding and controlling it have triggered important
developments across several disciplines of condensed matter physics. A recurring pattern in these studies is
that the suppression of the Kondo effect often results in intriguing physical phenomena such as impurity
quantum phase transitions or non-Fermi-liquid behavior. We show that the fidelity susceptibility is a
sensitive indicator for such phenomena because it quantifies the sensitivity of the system’s state with
respect to its coupling to the bath. We demonstrate the power of the fidelity susceptibility approach by using
it to identify the crossover and quantum phase transitions in the one and two impurity Anderson models.
The feasibility of measuring fidelity susceptibility in condensed matter as well as ultracold quantum gases
experiments opens exciting new routes to diagnose the Kondo problem and impurity quantum phase
transitions.
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The Kondo effect [1] was first observed in 1934 [2] as a
low temperature resistance minimum in gold and was
explained by Kondo in 1964 by taking into account the
scattering of conduction electrons and magnetic impurities
[3]. However, Kondo’s perturbative calculation exhibits an
unphysical divergence of the resistance at zero temperature.
Resolving the Kondo problem has ultimately led to
significant theoretical progress, including the formulation
of the scaling laws [4], the development of the numerical
renormalization group (NRG) method [5], and the appli-
cation of phenomenological Fermi-liquid theory [6], Bethe
ansatz [7,8], and boundary conformal field theory [9] to the
quantum impurity problems. Experimental interest
increased in the late 1990s due to breakthroughs in
fabricating artificial nanodevices [10–15]. Kondo physics
is also directly relevant to dissipative two-state systems [16]
and the heavy-fermion compounds [17,18]. There has also
been an increasing interest in realizing the Kondo effect in
ultracold atomic gases [19–22]. High controllability of the
latter system may offer chances to gain even deeper
understandings of the intriguing physics of quantum
impurity models.
A general description of the quantum impurity problems

can be written as

ĤðλÞ ¼ Ĥimpurity þ Ĥbath|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Ĥ0

þ λĤ1; ð1Þ

where Ĥ0 describes the quantum impurity together with a
continuous bath, and the last term describes the coupling
between them. We treat λ as a parameter and aim to
characterize the state of the quantum impurity as a function

of its coupling to the bath. The Kondo effect originates
from the bath’s tendency to screen the local moment
formed on the quantum impurity. Renormalization group
analysis shows that, in the Kondo region, the coupling
strength flows to infinity at low energy [4,5], implying that
the local moment will eventually get screened at a low
enough temperature even with an arbitrarily weak bare
impurity-bath coupling strength.
There are, however, various physical processes that can

compete with the Kondo effect. In the presence of such
competitions, the system may undergo an impurity quan-
tum phase transition where a competing state (local
moment, charge order, etc.) takes over as the bath-impurity
coupling λ decreases. Suppression of the Kondo screening
often leads to non-Fermi liquid behavior [23,24]. However,
different from the quantum phase transition in bulk systems
[25], at such an impurity quantum critical point, only a
nonextensive term in the free energy becomes singular. It is
not always straightforward to find local probes to identify
the impurity phase transitions. The question arises of how
to diagnose and characterize such impurity quantum phase
transitions in a general setting [26].
In this Letter, we argue that the fidelity susceptibility

[27,28] provides a general and direct probe for an impurity
quantum phase transition. The fidelity Fðλ1; λ2Þ of a
quantum system is defined as the overlap of two ground
state wave functions (or density matrices in the nonzero
temperature case [29]) for coupling strengths λ1 and λ2. The
fidelity susceptibility [27,28]

χFðλÞ ¼ −
∂2 lnFðλ; λþ ϵÞ

∂ϵ2
����
ϵ¼0

; ð2Þ
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typically exhibits a maximum at the phase boundary
because the system’s state changes drastically around the
quantum critical point. Since it depends only on wave-
function overlap but not on any local observable, fidelity
susceptibility provides a natural way to diagnose a system
irrespective of its specifics. Moreover, the fidelity suscep-
tibility also fulfills the scaling laws [28,30]; thus, it is an
effective tool for detecting and characterizing various
quantum phase transitions, see Ref. [31] for a review.
Recently, some of us developed an efficient approach for

calculating the fidelity susceptibility of quantum many-
body systems [32] using modern quantum Monte Carlo
(QMC) methods [33–43]. Specializing this to quantum
impurity models, one can perform an expansion of the
partition function at inverse temperature β [44]

Z ¼
X∞
k¼0

λk
Z

β

0

dτ1…
Z

β

τk−1

dτk

× Tr½ð−1Þke−ðβ−τkÞĤ0Ĥ1…Ĥ1e−τ1Ĥ0 �: ð3Þ

The Monte Carlo method can then be used to sample
Eq. (3) and simulate quantum impurity models unbiasedly
[45]. Equation (3) also provides a conceptual framework
for understanding an impurity quantum phase transition
through a quantum-classical mapping. The expansion can
be formally interpreted as a grand canonical partition
function of classical particles residing on a ring of length
β. These particles represent the bath-impurity coupling
events provided by the Ĥ1 terms, and their number is
controlled by the coupling strength λ. Since Eq. (3) has the
form of a fugacity expansion, an impurity quantum phase
transition driven by λ will manifest itself as a condensation
phase transition of classical particles [48,49].
A concrete example of this general reasoning is provided

by the Anderson-Yuval solution of the anisotropic Kondo
model [50–53] with the Hamiltonian

ĤKondo ¼
X
k;σ

ϵkĉ
†
kσ ĉkσ þ Jz

X
k;k0

Ŝzðĉ†k↑ĉk0↑ − ĉ†k↓ĉk0↓Þ

þ λ
X
k;k0

ðŜþĉ†k↓ĉk0↑ þ H:c:Þ: ð4Þ

The last term, which plays the role of λĤ1 in Eq. (1),
describes the coupling of the local impurity spin to free
electrons in the bath through spin-flips. An expansion in the
form of Eq. (3) and integration out of the free fermions lead
to Anderson and Yuval’s mapping of the Kondo model to a
one-dimensional classical Coulomb gas [50]. As illustrated
in Fig. 1(a), the spin flips can be interpreted as alternating
positive and negative charges interacting through a loga-
rithmic Coulomb potential [50–53]. The Coulomb gas
picture provides an intuitive understanding of the Kondo
effect and the renormalization group flow [51]. For a
ferromagnetic coupling Jz < 0, the Coulomb gas exhibits

a phase transition as the fugacity λ changes. For small
λ < jJzj, these Coulomb charges are dilute and all asso-
ciated in pairs, corresponding to the ferromagnetic Kondo
state where the quantum impurity is spin polarized, while
λ > jJzj corresponds to the antiferromagnetic Kondo state
where the spin-flips are so frequent that the impurity shows
no net magnetization; i.e., it is Kondo screened [54].
In the framework of Eq. (3), the fidelity susceptibility (2)

can be readily calculated using a covariance estimator [32]

χF ¼ hkLkRi − hkLihkRi
2λ2

; ð5Þ

where kL and kR are the numbers of Ĥ1 operators in the two
bipartitions of the imaginary-time axis. In the case of the
Kondo model Eq. (4), they correspond to the number of
Coulomb charges on either side of the bipartition, shown in
the bottom of Fig. 1(a). It is clear from Anderson and
Yuval’s classical Coulomb gas picture that the fidelity
susceptibility estimator (5) captures the critical fluctuation
upon a condensation phase transition and, therefore, is able
to signify the impurity phase transitions of the anisotropic
Kondo model.
For general quantum impurity models, the estimator (5)

quantifies the sensibility of the system’s state with respect
to the bath-impurity coupling and can, therefore, be used to
diagnose impurity quantum phase transitions involving
Kondo effects. Fidelity susceptibility is a generic probe
of phase transition irrespective of details of the system [56].

(a) (b)

FIG. 1 (color online). (a) The Anderson-Yuval mapping of the
Kondo model [Eq. (4)] to a one-dimensional classical Coulomb
gas. The magnetization of the quantum impurity flips in the
imaginary time due to the coupling to the bath. The spin flips can
be interpreted as positive (red circles) and negative (blue circles)
charges distributed on a periodic ring. (b) The continuous-time
hybridization-expansion QMC algorithm, in the same spirit,
maps the single impurity Anderson model [Eq. (6)] to a classical
statistical problem. The thick segments indicate the occupation of
the spin up and down impurity levels. The endpoints of each
segment represent the hybridization events where the electrons
hop in or out of the impurity, which are treated as classical objects
in the QMC sampling. In both cases (a) and (b), the fidelity
susceptibility is calculated as the covariance of kL and kR, which
count the number of bath-impurity coupling events in the two
equal bipartitions of the imaginary-time axis.

PRL 115, 236601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 DECEMBER 2015

236601-2



Moreover, it can even be used to inspect the crossover
physics, even though there is no sharp phase boundary [57].
As an illustration, first, we consider the single impurity

Anderson model (SIAM) [58]

ĤSIAM ¼
X
k;σ

ϵkĉ
†
kσ ĉkσ þ ϵd

X
σ

n̂σ þ Un̂↑n̂↓

þ λ
X
k;σ

ðĉ†kσd̂σ þ H:c:Þ; ð6Þ

where n̂σ ¼ d̂†σd̂σ is the impurity occupation number, and
the second line describes the hybridization of the impurity
and the noninteracting bath with strength λ. We consider a
noninteracting bath with semicircle density-of-states
ρðϵÞ ¼ P

kδðϵ − ϵkÞ ¼ 2
πD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵ=DÞ2

p
with D ¼ 2 and

choose ϵd ¼ −U=2 such that the model is at the particle-
hole symmetric point. As we tune the on-site interaction U
and the hybridization strength λ, there is a crossover from a
local moment regime, where the spin of the singly occupied
impurity is effectively detached from the bath to the Kondo
region, where the local moment is screened by the
bath [59].
We use the continuous-time hybridization expansion

algorithm [39] for our simulations and illustrate one
Monte Carlo configuration in Fig. 1(b). Each dashed line
indicates a hybridization event, where the electron hops on
or off the impurity site, thus, changing the occupation
(indicated by the thickness of the segments). The crossover
from the local moment to the Kondo region is accompanied
by the proliferation of the hybridization events in imaginary
time. The fidelity susceptibility, Eq. (5), is easily measured
by counting the number of hybridization events in a
bipartition of the imaginary time axis, shown in the bottom
of Fig. 1(b).
Figure 2(a) shows the fidelity susceptibility χFðλÞ in the

U − λ plane with fixed inverse temperature β ¼ 100 [60],
where the peak indicates the crossover from local moment
to Kondo region. This figure is a two-dimensional slice of
the phase diagram of the Anderson impurity model
sketched in the seminal NRG work of Ref. [59]
(Fig. 12). The red solid line shows the contour determined
by the Kondo temperature 1=β¼TKðU;λÞ¼λ

ffiffiffiffi
U

p
e−πU=ð8λ2Þ

[61]. This boundary agrees with the maxima of the fidelity
susceptibility, showing that it, indeed, correctly captures the
crossover physics. The peak of fidelity susceptibility is
higher at the small λ region, which is a manifestation of the
Anderson orthogonality catastrophe [62]: even a weak
coupling to the quantum impurity drastically changes the
state of the system.
To further confirm the relevance of the peak of

the fidelity susceptibility, we calculate the local spin
susceptibility

χs ¼
Z

β

0

dτhŜzðτÞŜzð0Þi; ð7Þ

where Ŝz ¼ ðn̂↑ − n̂↓Þ=2 is the magnetization on the
impurity. Figure 2(b) shows that 4Tχs, which corresponds
to the effective moment on the impurity, changes from one
in the local moment region to zero in the Kondo region. The
crossover region agrees with the peak determined from the
fidelity susceptibility in Fig. 2(a).
As a second example, we consider the two-impurity

Anderson model (TIAM) [63]

ĤTIAM ¼
X
k;α;σ

ϵkĉ
†
kασ ĉkασ þ ϵd

X
α;σ

n̂ασ þ U
X
α

n̂α↑n̂α↓

þ JŜ1 · Ŝ2 þ λ
X
k;α;σ

ðĉ†kασd̂ασ þ H:c:Þ; ð8Þ

where α ¼ f1; 2g labels two impurity sites with occupation
number n̂ασ ¼ d̂†ασd̂ασ. The impurities have the same local
interaction U and on-site energy ϵd ¼ −U=2. Each impu-
rity is coupled to its own bath with the hybridization
strength λ. The second but last term represents the
Ruderman-Kittel-Kasuya-Yosida (RKKY) [64–66] interac-
tion between magnetic impurities in a metal. In the absence
of this term, each impurity is Kondo screened by its own
bath for the choice of λ ¼ 1 and β ¼ 100. However, the

(a)

(b)

FIG. 2 (color online). Crossover from the local moment
to the Kondo region in the single impurity Anderson model
[Eq. (6)] revealed by (a) fidelity susceptibility and (b) spin
susceptibility 4Tχs defined in Eq. (7). The red solid line shows
the contour determined from the Kondo temperature 1=β ¼
TKðU; λÞ [59,61].
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antiferromagnetic RKKY coupling J > 0 favors a singlet
formed between the two impurity spins, which competes
with the Kondo screening and causes an impurity quantum
phase transition [67,68]. Detailed studies of the two
impurity Anderson (and Kondo) model have provided
insights into various aspects of Kondo [69,70] and heavy
fermion physics [71].
Simulation of the two impurity Anderson model (8) goes

beyond the segment picture illustrated in Fig. 1(b), and thus,
we adopt an algorithm [44,72] suitable for general inter-
actions. The fidelity susceptibility is still calculated in the
same way, by simply counting the number of hybridization
events.AsshowninFig.3(a), it exhibitsan increasinglysharp
peakas the inverse temperatureβ increases.Thepeaklocation
shifts towards the vertical dashed line, where the equal-time
spin-spin correlation hŜ1 · Ŝ2i ¼ 3hŜz1Ŝz2i ¼ −0.25 in
Fig. 3(b). According to previous NRG studies [68,73], the
quantum critical point is right at the dashed line. Obviously,
the fidelity susceptibility offers a better indication of the
phase transition compared to the spin-spin correlations
because the later quantity is featureless at the critical point
and has much weaker temperature dependence. Figure 3(c)
shows thedensityof statesat theFermi level,whichdecreases
as the spin singlet state takes over theKondo state in the large
J limit [74].
Next, we perform a scaling analysis of the fidelity

susceptibility close to the quantum critical point [30].
Since an infinite bath was assumed, the only finite
dimension is the inverse temperature. Figure 4 shows the
scaled fidelity susceptibility χF=β versus ðJ − JcÞβ1=2 with

Jc ¼ 0.37, which results in a good data collapse. Although
the scaling form is chosen empirically according to the one
for lattice systems [30], the observed scaling exponents
agree with the considerations of Ref. [75]. The observed
data collapse suggests that the fidelity susceptibility not
only captures the impurity quantum critical point, but also
the values of the critical exponents, which are an indicator
for the universality class of a quantum phase transition.
Our Letter shows that the fidelity susceptibility is a

versatile tool for probing and inspecting phase transition
and crossover physics in quantum impurity models. It is
readily accessible in QMC simulations, and it serves as a
general purpose indicator for the breakdown of the Kondo
effect. Conceptually, our work exploits the intrinsic quan-
tum to classical mapping of the quantum impurity models
in the context of modern QMC approaches.
Recent experimental and theoretical studies explore an

even richer variety of complex quantum impurities and
phase transitions, such as the interplay of the Kondo effect
and interimpurity couplings [76–78], coupling to super-
conducting or Dirac fermion baths [79–83], and the effect
of multiple levels or multiple channels [84–87], see
Refs. [24,88] for a review. The fidelity susceptibility
will provide a valuable tool to discover rich physical
phenomena in such settings. In a broader context, since
much of the physics of quantum impurity models also
manifest themselves in lattice models [89,90] through the
dynamical-mean-field-theory framework [91,92], fidelity
susceptibility of these auxiliary quantum impurity problems
may shed light on phase transitions of correlated materials.
Finally, it is worth mentioning that fidelity susceptibility

is related to the dynamical response of the Ĥ1 term that is
measurable using either time-dependent ramps or quenches
[93] or through spectroscopy measurements [94,95].
Alternatively, fidelity susceptibility can also be obtained
from the overlap of quantum many-body wave functions,
which has been measured in a NMR quantum simulator
[96] and, notably, in ultracold bosons by utilizing a
quantum gas microscope [97]. Combining these detection
approaches with recent efforts of realizing Kondo physics
in ultracold atomic gases [19–22], the proposed diagnostic

(a)

(b)

(c)

FIG. 3. (a) The fidelity susceptibility, (b) equal-time spin-spin
correlation, and (c) density-of-states at the Fermi level of the
two-impurity Anderson model Eq. (8) as a function of the
interimpurity RKKY coupling strength. The dashed vertical line
indicates the critical point Jc ¼ 0.37 where the equal-time spin-
spin correlation 3hŜz1Ŝz2i ¼ −0.25 [68,73].

FIG. 4 (color online). Data collapse of the scaled fidelity
susceptibility with Jc ¼ 0.37. The data are the same as in
Fig. 3(a).
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tool based on fidelity susceptibility would be useful in a
real setting in the laboratory.
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