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We explore the nonequilibrium response of Chern insulators. Focusing on the Haldane model, we study
the dynamics induced by quantum quenches between topological and nontopological phases. A notable
feature is that the Chern number, calculated for an infinite system, is unchanged under the dynamics
following such a quench. However, in finite geometries, the initial and final Hamiltonians are distinguished
by the presence or absence of edge modes. We study the edge excitations and describe their impact on the
experimentally observable edge currents and magnetization. We show that, following a quantum quench,
the edge currents relax towards new equilibrium values, and that there is light-cone spreading of the

currents into the interior of the sample.
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Topological phases of matter display many striking
features, ranging from the precise quantization of macro-
scopic properties, to the emergence of fractional excitations
and gapless edge states. An important class of topological
systems is provided by the so-called Chern insulators
realized in two-dimensional settings [1]. A famous example
is the Haldane model [2], which describes spinless fer-
mions hopping on a honeycomb lattice. The Haldane model
exhibits both topological and nontopological phases, and
its behavior is closely related to the integer quantum Hall
effect. Recent advances using ultracold atoms [3—7] have
led to the experimental realization of the Haldane model
[8]. Proposals also exist for realizing other states of
topological matter using cold atoms [9].

A fundamental characteristic of topological systems is
their robustness to local perturbations, making them ideal
candidates for applications in metrology and quantum
computation. However, much less is known about their
dynamical response to global perturbations and time-
dependent driving. This issue is of relevance in a variety
of contexts, ranging from the time evolution and controlled
manipulation of prepared topological states, to the dynam-
ics of topological systems coupled to their environment.
Understanding the impact of topology on the out of
equilibrium response is crucial for further developments,
and is the motivation for this present work. For recent
progress in this direction see Refs. [10-18].

In this Letter we investigate the nonequilibrium dynam-
ics of the paradigmatic Haldane model. In particular,
we consider quantum quenches and sweeps between
topological and nontopological phases. Key questions that
we will address include the following. What happens to the
topological properties on transiting between different
phases? What happens to the edge excitations following
a quantum quench? How do the topological characteristics
influence the nonequilibrium dynamics?
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PACS numbers: 71.10.Pm, 03.65.Vf, 67.85.-d, 73.43.-f

Model.—The Haldane model describes spinless fer-
mions hopping on a honeycomb lattice with both nearest
and next nearest neighbor hopping parameters. The
Hamiltonian is given by [2]
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where the fermionic operators obey the anticommutation
relations {¢;, éj} =6, and h; =¢]¢;. Here, (i,j) and
((i, j)) indicate the summation over the nearest and next
to nearest neighbor sites, respectively, and A and B label the
two sublattices. The phase factor ¢;; = +¢ is introduced in
order to break time-reversal symmetry and is positive for
anticlockwise next to nearest neighbor hopping. The energy
offset £M breaks spatial inversion symmetry. The phase
diagram of the Haldane model is shown in Fig. 1(a);
following Ref. [2] we assume that |£,/#;| < 1/3 so that the
bands may touch, but not overlap.

For t#,,M < t;, the Hamiltonian (1) has a linear
dispersion near the six corners of the hexagonal
Brillouin zone, but only two of these are inequivalent.
As a result, close to half filling, the low-energy description
is given by the sum of two Dirac Hamiltonians

i, - ( mac? —ckei"9>’ )

—cke 0 —m,c?

where @ = +1 label the Dirac points. Here, ¢ = 3¢, /2# is
the effective speed of light, k exp(if) parametrizes the 2D
momentum (k,,k,), and m, = (M —3+/3at, singp)/c? is
the effective mass [2]. The topological phases have a
nonvanishing Chern number v [1,2,19,20]. For a state
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FIG. 1 (color online). (a) Phase diagram of the Haldane model
obtained from the low-energy Dirac fermion representation,
showing topological (v =+1) and nontopological phases
(v = 0) [2]. We consider quantum quenches and sweeps between
different regions of the phase diagram, as illustrated by the
arrows. (b) The low-energy spectrum of the Haldane model is
described by excitations around two Dirac points. After a quench,
carriers in the lower band are excited to the upper band.

ly) this is defined by the integral of the Berry curvature
over the 2D Brillouin zone. In the low-energy description
this corresponds to integration over 2D momentum space:

1
V= /dzk Q, (3)
2

where Q =0, A; —0; A, and Ay = i(z//|8k”|1//> is the
Berry connection. For the ground state of the Haldane
model v € +£1,0. This may be decomposed into con-
tributions from the two Dirac points as v=v, +v_,
where v, = —(a/2)sgn(m,) € +1/2. The boundaries of
the topological phases correspond to the locations
where m_ changes sign. They are thus given by M/t, =
+31/3sin ¢, and are independent of 7,, see Fig. 1.

Quantum quenches.—In order to gain insight into the
nonequilibrium dynamics of the Haldane model, we con-
sider quantum quenches between different points (M, ¢) on
the phase diagram shown in Fig. 1, for fixed values of ¢,
and t,. At time t = 0, we prepare our system in the ground
state with parameters (M, ). At half filling our initial
state fills the lower band. We then abruptly change the
parameters of H to (M, ¢), and allow the system to evolve
unitarily under the action of this new Hamiltonian. In
general, this will lead to a nontrivial occupation of both the
lower and the upper bands.

We begin by examining the nonequilibrium response
of the effective Dirac Hamiltonian A = A, + H_. Since
v=—13[sgn(m,) —sgn(m_)], quenching between differ-
ent phases corresponds to changing the sign of one or
both of the masses m,,. For a given Dirac point, such changes
will lead to a redistribution of carriers between the two
bands, which may be measured through band-mapping
techniques [8]. For a @ independent superposition,
(k) = ag(k)e W1, (k) + by (k)e "0, (K)), the
Chern number is formally given by

1ol = =a x senlon) 5 - 0,007
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where we integrate over the whole 2D momentum
space. Here, a,(k) and b, (k) are complex ¢ numbers, § =
arg[a,(oo)] — arg[b,(c0)], and E5" (k) are the energies in the
lower and upper bands. In general, v,(?) is time dependent,
and differs from its ground state values +1/2. However, the
time dependence only enters via the superposition coeffi-
cients evaluated at k = c0. An explicit computation shows
that b, (c0) = 0, following a quantum quench, see Fig. 2 and
the Supplemental Material [21]. In addition, b,(0) = 0, +1,
so the potential modification of v, is compensated for by the
change in sign of m,. As a result the Chern number is
unchanged from its initial value, even if one quenches
between different phases. Similar results may also be
obtained for a linear sweep, m,(f) =1t/z, see the
Supplemental Material [21].

Preservation of Chern number.—An intuitive way to
understand the persistence of v following a quantum quench
is in terms of spin textures in momentum space. The Dirac
Hamiltonian in Eq. (2) can be recast as an effective spin in a
k-dependent magnetic field h,(k). Explicitly, ,(k)=
—h,(k) - 6/2, where ¢ are the Pauli matrices. In equilibrium,
the topological phases with v, = +1/2 correspond to meron
spin configurations, which wind on the upper (lower) half
sphere [22]. Following a quantum quench, the spins precess
in the effective magnetic field of the new Hamiltonian,
preserving the topological characteristics of the initial spin
configuration. A similar argument may also be applied to the
Haldane model (1) in k space. Indeed, one expects the
preservation of topological invariants under time evolution to
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FIG. 2. Probability of occupying the upper band for a single
Dirac point (¢ = —1) with ¢ = 1, following a quench of m,.
Sign-preserving quench, m_ = —1 - m_ = —0.1 (solid line),
and a sign-changing quench, m_ = -1 — m’_ = 0.1 (dashed

line). In both cases, b_(o0) =0, corresponding to the time
independence of v_(t) using Eq. (4). The sign-changing quench
yields |6_(0)[> = 1, but the contribution to v_(¢) in Eq. (4) is
compensated by the change in sign of m_. As a result, v_ is
unchanged from its initial value.
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be a general feature for noninteracting fermions in a periodic
system, where each k state evolves unitarily under some
Hamiltonian A (k ), provided A (k) is smoothly varying in k
space. The persistence of the topological invariant of a state,
even under changes in the topology of the underlying
Hamiltonian, has also been noted in the context of quenches
of topological superfluid states [23,24]. In principle, the
preservation of the Chern index may be measured exper-
imentally by expansion-imaging techniques, which can
allow the wave functions of the occupied single particle
states to be fully determined across the Brillouin zone
[4,17,25,26]. It is important to stress, however, that this does
not imply the preservation of the Hall response. The latter
depends on the final state Hamiltonian, not just the initial
state. Out of equilibrium, the usual Thouless-Kohmoto-
Nightingale-den Nijs (TKNN) formula [1] does not
apply [27].

Edge states.—In the above discussion we have demon-
strated that the value of v is unchanged as one quenches and
sweeps between different phases. However, there is a
fundamental distinction between the topological and non-
topological phases, due to the presence or absence of edge
states in a finite-size sample [28]. In quenching between
phases of different topological character, these edge states
will either appear or disappear, depending on the direction
of the quench. This is confirmed in Fig. 3, which shows the
reconstruction and repopulation of the energy levels fol-
lowing a quench from the nontopological phase to a
topological phase. It is readily seen that the edge states
emerge and are populated as a result of the quench, in spite
of the fact that v remains equal to zero in the absence of
boundaries. Conversely, a quench from a topological phase
to the nontopological phase eliminates the edge states,
while v remains pinned at unity.

Edge currents and orbital magnetization.—Having
examined the repopulation of the edge states we now
consider physical observables that depend on these states,
including the edge currents and the orbital magnetiza-
tion. We first consider these quantities in equilibrium,
which already display interesting features. We define the
local current ﬂowing through the site i by J =

— 530518 ¢, —H.c.), where t;; is the hopping param-
eter of the Haldane model between sites i and j, §;; is the
vector displacement of site i from j, and the sum is over the
nearest and next nearest neighbors. The site indices may be
decomposed into the triplet {m, n, s} labeling the x and y
positions of the unit cell and the sublattice index s = A, B.
The total longitudinal current flowing along the strip in the
x direction at a definite transverse y position is therefore
given by J3 = (J2) =3, (J%,.,). In Fig. 4(a) we plot this
current within the topological phase for M =0 and
@ = r/3. The presence of the counterpropagating edge
currents is readily seen. In Fig. 4(b) we show the depend-
ence of these edge currents on ¢ where, for clarity,
we define the edge currents precisely on the sample
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FIG. 3. Energy spectrum of the Haldane model obtained by exact

diagonalization on a finite-size strip of width N = 20 unit cells
with armchair edges. We take periodic (open) boundary conditions
along (transverse to) the strip and set t; = 1, 1, = %, and M = 1.
(a) Equilibrium population of the energy levels in the nontopo-
logical phase with ¢ = /6. (b) Repopulation of the levels after a
quench to the topological phase with ¢ = /3, corresponding to
the solid arrow in Fig. 1(a). The size of the dots is proportional to
the probability of finding a particle in the mode. Postquench, the
filling of the edge states and the bands is nontrivial.

boundaries. Measurements of edge currents have been
performed for ladder systems [29], and other forms of
local imaging have been proposed [30]. Somewhat surpris-
ingly, the edge currents vanish on loci within the topo-
logical phase, in spite of the presence of edge states in the
spectrum. The edge currents are composed of counter-
propagating contributions, which cancel at ¢ = z/2, see
the Supplemental Material [21]. Moreover, the longitudinal
currents J7, exhibit z periodicity in ¢. This is a consequence
of being at half filling and occurs in spite of the fact that the
Hamiltonian and the current operator have a periodicity of
2z. To prove the z periodicity in ¢ we first note that both
the Hamiltonian and the current operator change sign under
the transformation M — —M, ¢ = @ + 7, Cpypa = Crinas
Cung = —Cmnp» thereby interchanging the upper and
the lower bands. At half filling, we fill only the lower
band, and it follows that Ji(M,¢) = J5 (=M, ¢ + 7). In
addition, the current changes sign under the parity trans-
formation x — —x. This interchanges the sublattices and
corresponds to M — —M and ¢ — —¢. It follows that
JEX(M, @) = =Ty (=M, —¢) = J3 (=M, @), where in the last
step we use the transformation properties under time
reversal. Combining these relations, one obtains the z
periodicity in ¢ and the vanishing of the longitudinal
currents for ¢ = /2.

Similar arguments also apply to the (lattice discretization
of the) orbital magnetization:

1 N
M :ﬁ/er rx (J(r)), (5)
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FIG. 4 (color online). Equilibrium properties of the Haldane
model on a finite-size strip as used in Fig. 3. (a) Total longitudinal
current J;, along the strip as a function of the transverse spatial
index n € 1,...,20, for M = 0 and ¢ = x/3. (b) Edge currents
corresponding to J; with n = 1 (solid) and n = 20 (dashed) for
M = 0. The edge currents exhibit # periodicity in ¢ and vanish
when ¢ = n/2. (c) Orbital magnetization M as a function of ¢
for M = 0. (d) Intensity plot of M where the dashed lines
correspond to the boundaries of the topological phases. Numeri-
cally, we observe that M vanishes on the loci M = +sing
(solid) within the topological phases. The loci are fits to the
numerical data (triangles) where M = 0. The magnetization also
vanishes on the vertical lines ¢ = 7/2,7,37x/2, ..., as follows
from symmetry considerations.

where J(r) is the local current density operator and A is the
area. As shown in Fig. 4(c) this also vanishes within the
topological phases and has z periodicity in ¢ [31,32]. Our
numerical computations also reveal that the magnetization
vanishes on a sinusoidal locus M = =+ sin(¢p) within the
topological phases, see Fig. 4(d). In addition, M(M, @)
has extrema at M =0 and on the topological phase
boundaries, M = ++/3sin(¢p), for fixed ¢. Away from
half filling, the particle-hole symmetry is broken and the
periodicity of the currents and the magnetization is restored
to 2z. The increase or decrease of the edge currents
depends on the sign of the doping and the Chern index,
see the Supplemental Material [21].

Dynamics of the edge currents.—Having discussed the
equilibrium properties of the edge currents we now con-
sider their response to quantum quenches. In Fig. 5 we
show quenches from the topological to the nontopological
phase. The edge currents decay towards new values that are
numerically close, but not equal, to the equilibrium values

IR ()

FIG. 5 (color online). Dynamics of the edge current J}(¢) for
N =30 (circles) and N =40 (crosses) following a quantum
quench between the topological phase and the nontopological
phase with #;, =1, 1, = %, and fixed ¢ = 7/3. Quenches from
M = 1.4to M = 1.6 (main panel) and from M = 1.4to M = 2.2
(inset) showing that the edge currents approach new equilibrium
values. For the chosen parameters, these are very close to the
ground state expectation values of J3, in the final Hamiltonian, as

indicated by the horizontal lines.

of the postquench Hamiltonian. This is in spite of the fact
that the system is left in an excited state under unitary
evolution, and that v remains pinned to unity in the absence
of boundaries. Quenches from the nontopological to
topological phases exhibit similar behavior, see the
Supplemental Material [21]. Further insight into the non-
equilibrium evolution may be gleaned from the time
evolution of the longitudinal currents across the two-
dimensional system. As shown in Fig. 6, the damped
oscillations of the edge currents are accompanied by the
light-cone spreading of the currents into the interior of the
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FIG. 6. Dynamics of the currents |J3(¢)| following a quantum
quench from the topological to the nontopological phase for the
parameters used in the inset of Fig. 5. The damped oscillations of
the edge currents are clearly visible, as is the light-cone spreading
of the currents into the interior of the sample, where ¢ =
3t,/2h = 3/2 is the effective speed of light. The waves propa-
gating from the two edges meet at time ¢ ~ (N/2)v/3/2¢ ~ 5.77,
leading to resurgent oscillations in finite-size samples, see the
Supplemental Material [21].
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sample. It would be interesting to observe this dynamics in
experiment, which is in principle possible if local imaging
is available [30].

Conclusions.—In this Letter we have explored the
nonequilibrium dynamics of the Haldane model. We have
demonstrated that the Chern number is preserved in both
quenches and sweeps between different regions of the
phase diagram. However, the edge states may be recon-
structed and repopulated, leading to changes in the accom-
panying edge currents. Predictions for experiment include
the vanishing of the equilibrium edge currents in the
topological phases, and the light-cone spreading of the
currents following a quantum quench. There is a wide
variety of directions for further research, including the
dynamics of the conductivity and its relation to the Chern
number, and the role of decoherence via coupling to the
environment.
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Note added.—The related paper [33] also reached similar
conclusions to ours regarding the invariance of v under
unitary evolution.
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