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The conventional approach to the turbulent energy cascade, based on Richardson-Kolmogorov
phenomenology, ignores the topology of emerging vortices, which is related to the helicity of the
turbulent flow. It is generally believed that helicity can play a significant role in turbulent systems, e.g.,
supporting the generation of large-scale magnetic fields, but its impact on the energy cascade to small
scales has never been observed. We suggest, for the first time, a generalized phenomenology for isotropic
turbulence with an arbitrary spectral distribution of the helicity. We discuss various scenarios of direct
turbulent cascades with new helicity effect, which can be interpreted as a hindering of the spectral energy
transfer. Therefore, the energy is accumulated and redistributed so that the efficiency of nonlinear
interactions will be sufficient to provide a constant energy flux. We confirm our phenomenology by high
Reynolds number numerical simulations based on a shell model of helical turbulence. The energy in our
model is injected at a certain large scale only, whereas the source of helicity is distributed over all scales.
In particular, we found that the helical bottleneck effect can appear in the inertial interval of the energy
spectrum.
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Many years ago, K. Moffatt delivered a verdict on the
influence of helicity on spectral properties of turbulent
flows [1]:

“no matter how strong the level of helicity injection
may be at wave numbers of order k0, the relative level
of helicity as measured by the dimensionless ratio
HðkÞ=2kEðkÞ must grow progressively weaker with
increasing k; and when k=k0 is sufficiently large it
may be conjectured [2] that the helicity has negligible
dynamical effect, and is itself convected and diffused in
much the same way as a dynamically passive scalar
contaminant [3].”

Thus, the mean helicity can play a significant role in
turbulent systems, e.g., supporting the generation of large-
scale magnetic fields [4,5], but its impact on the spectral
properties of turbulent flows is practically negligible.
The experimental study of helicity needs hardly afford-

able three-dimensional measurements with high spacial
resolution. Moreover, the helical forcing of a turbulent flow
is not straightforward to implement in the laboratory. This
is why the impact of helicity on the energy cascade has
been studied in few laboratory experiments. The energy and
helicity spectra with a slope“−5=3” have been measured in
the atmospheric boundary layer [6].
Direct numerical simulations (DNS) are able to model

helical isotropic turbulence and evaluate the spectral
properties of the flow. They confirm the existence of
Kolmogorov spectra (see, for example [7,8]). The same
results have been demonstrated at a high spectral resolution

with the help of the shell model of turbulence [9,10],
showing no reason to doubt Moffatt’s argument.
Features of helical turbulence are considered able to

address the problem of the inverse energy cascade. Like
two-dimensional turbulence, it was suggested that two
inertial ranges could be realized corresponding to the direct
cascade of helicity with an energy spectrum “−7=3” and an
inverse cascade of the energy with a slope “−5=3” [2,11].
However, this analogy is not simply applicable because the
helicity spectral density, in contrast to enstrophy, is not
proportional to the energy spectral density. Recently, direct
numerical simulations of the three-dimensional isotropic
turbulence confirmed that the inverse cascade appears in
truncated three-dimensional Navier-Stokes equations [12],
in which the helicity is prescribed to be a sign-defined
quantity and therefore directly related to the energy.
However, the statistical properties of helical turbulence

are an issue. Indeed, in some cases, the spectra of turbulent
magnetohydrodynamical (see [13,14] and references
therein), convective [15], and atmospheric flows [16] differ
from Kolmogorov’s scaling, which can be interpreted as an
effect of helicity. Furthermore, the influence of helicity on
the flow properties can be manifested in the behavior of the
turbulent spectrum of a passive scalar (e.g., an aerosol)
[17]. Helicity can change not only the energy and passive
scalar spectra, but can lead to the reduction of the turbulent
viscosity and energy accumulation at large scales [18], or
can play a significant role in the generation of large-scale
helical vortex structures in the atmospheres of the Earth
and planets [19–21]. To clarify the role of helicity, we

PRL 115, 234501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 DECEMBER 2015

0031-9007=15=115(23)=234501(5) 234501-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.234501
http://dx.doi.org/10.1103/PhysRevLett.115.234501
http://dx.doi.org/10.1103/PhysRevLett.115.234501
http://dx.doi.org/10.1103/PhysRevLett.115.234501


consider the behavior of helical isotropic turbulence in a
somewhat different way.
Coming back to a forced helical turbulence, we revise

the view that helicity is injected into the flow together with
energy at the same scale. Theoretically, one can assume that
turbulence is excited by a source of energy at the largest
scale and an independent source of pure helicity, acting at a
certain scale or over all scales in the inertial interval.
Then, the helicity spectral flux is not constant anymore and
the helicity spectral density can reach significantly higher
values and influence the energy cascade. Real physical
situations usually are far from ideal, but can be similar to
some extent, e.g., in rotating convective flows [22,23].
In the present Letter, we aim to elaborate on a phenom-

enology of an energy spectrum for the highly helical
turbulence. Our theoretical result is demonstrated by
numerical simulations of helical turbulence with a con-
trolled constant energy flux and distributed helicity injec-
tion over the scales in the inertial range. We show various
scenarios of turbulent cascades with the helicity effect and
discuss its physical meaning with regard to the bottleneck
phenomenon known for conventional turbulence [24].
First, we adopt the basic statement of Kolmogorov’s

approach, which claims that in the inertial range at any
scale l the energy flux is equal to the dissipation rate,
ΠE

l ¼ ε. The energy flux is related to the velocity pulsations
vl at this scale as

ΠE
l ≈ v3l =l ð1Þ

and the energy of velocity pulsations El ∼ v2l ∼ ðεlÞ2=3.
Second, we follow the decomposition of velocity pulsa-

tions in two helical modes [11], vl ¼ vþl þ v−l , with
corresponding energies E�

l ∼ ðv�l Þ2. Then the energy and
helicity at the scale l are

El ¼ Eþ
l þ E−

l ;

Hl ¼ Hþ
l þH−

l ¼ ðEþ
l − E−

l Þ=l: ð2Þ

The energy flux at scale l is decomposed into four terms:
ðvþl Þ2v−l =l, ðv−l Þ2vþl =l, ðvþl Þ3=l, and ðv−l Þ3=l. The contri-
bution of the first two terms dominates in local interactions
in the inertial range and becomes comparable with the two
other terms for nonlocal interaction [11]. The significant
role of terms ðv�l Þ3=l was distinguished in the inverse
cascade [12]. For the direct cascades of the energy and
helicity, one can neglect the contribution of these terms.
We introduce the relative helicity Hr

l ¼ lHl=El, which
allows us to link the intensity of two helical modes

v−l ¼ vþl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −Hr
l

1þHr
l

s

≡ vþl ξl: ð3Þ

Then the energy flux provided by local interactions can be
estimated as

ΠE
l ≈ ðvþl Þ2v−l =lþ ðv−l Þ2vþl =l ¼ ðvþl Þ3ðξl þ ξ2l Þ=l: ð4Þ

Replacing Eq. (1) by Eq. (4), we finally obtain

Eþ
l ∼

�

εl
ξl þ ξ2l

�

2=3
: ð5Þ

One can express E−
l ¼ ξ2l E

þ
l from Eq. (3) and obtain the

total energy

El ¼ Eþ
l þ E−

l ∼ ðεlζlÞ2=3; ð6Þ
where the dimensionless variable ζl

ζl ¼
ð1þ ξ2l Þ3=2
ξl þ ξ2l

ð7Þ

depends onHr
l and defines “the degree of helical blocking”

of the spectral energy flux at a given scale. jHr
l j character-

izes the dominance of some helical modes over others with
the opposite sign, i.e., it is the helical part of the energy.
Then a new parameter δl ¼ 1 − jHr

l j corresponds to the
nonhelical part of the energy, which is free of helicity.
For the highly helical case Hr

l → �1, formula (7) has as
asymptote

ζl ≈ δ−1=2l : ð8Þ

The corresponding spectral energy density for highly
helical turbulence

EðkÞ ≈ ε2=3k−5=3δðkÞ−1=3 ð9Þ

is independent of the sign of the injected helicity. Here,
k ∼ l−1 is the wave number and δðkÞ ¼ 1 − jHrðkÞj ¼
1 − jHðkÞj=½kEðkÞ�. Usually for the single-scale forcing
of helicity, HrðkÞ ∝ k−1 and the parameter δðkÞ does not
differ from unity. One can expect a significant change in
the turbulent spectra for highly helical turbulence only.
We interpret our results as a hindering effect of the

spectral energy transfer in scales with high relative helicity.
The energy should be accumulated and redistributed so
that the efficiency of nonlinear interactions will be enough
to provide the constant energy flux, which is predetermined
by the energy injection rate. A similar consequence is
observed as a result of the bottleneck phenomenon [24] in
the nonhelical turbulent cascade when nonlocal interactions
drop out of the spectral energy transfer at the end of the
inertial range. We exploit this analogy to name our effect
the helical bottleneck effect, having in mind the helical
mechanism of cascade blocking.
Further study of the suggested helical effect by DNS

would be highly desirable. Recent simulations [25] confirm
a change of energy spectrum due to distributed helicity and
justify a dominant contribution of triads ðv�l Þ2v∓l =l which
is assumed in Eq. (4). However, verification of Eq. (9) is
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hardly affordable by DNS with a resolution which seems to
be achievable in near future. We demonstrate the realiz-
ability of the energy spectrum [Eq. (6)] with helical
correction [Eq. (7)] by numerical simulation using the
helical shell model of turbulence (H1 type model as it is
classified in the review [26]). The governing equations for
complex shell variables Un are

_Un ¼ WnðU;UÞ − Re−1k2nUn þ fEn þ fHn ; ð10Þ
where kn ¼ λn is the wave number attributed to the shell n,
λ characterizes the shell thickness, and a bilinear operator
Wn determines interactions of Un with its neighbors Unþ1

and Un−1. The energy forcing term fEn is prescribed to
operate at the largest scale only, i.e., in the shell n ¼ 0
(k0 ¼ 1), and provides the mean energy injection rate ε
and the zero mean helicity injection rate. For the helicity
forcing, we introduce a scale distributed force

fHn ¼ ıη0kαnUnðU2
n þ U�

n
2Þ=2; ð11Þ

which acts in all shells and includes two parameters η0 and
α (the asterisk is for complex conjugation). η0 defines the
helicity injection rate at the largest scale (n ¼ 0), which is
the energy forcing scale also. α specifies the scaling of the
helicity influx.
Variables Un define the energy En ¼ jUnj2=2 and

helicity Hn ¼ ıknðU�
n
2 − U2

nÞ=4 of the shell n. The corre-
sponding spectra are EðknÞ ¼ En=kn and HðknÞ ¼ Hn=kn.
As decomposition [Eq. (2)], one can split En and Hn into
two helical parts. Then the helicity injection rate at the shell
n is _Hn ¼ 4η0kαþ1

n Eþ
n E−

n . Note, that the force fHn saturates
and tends to zero if the helicity Hn approaches the limiting
value knjUnj2.
Numerical simulations of shell model Eqs. (10) are

performed for Re ¼ 108 and λ ¼ 1.62. Statistically, sta-
tionary spectra and fluxes are obtained by averaging over
256 runs (with random initial conditions and energy
forcing), 104 time units long each. We choose the combi-
nation of governing parameters η0 ¼ 0.3, 1, 3.32 and
α ¼ 0, 0.5, 1 to study the transition of turbulence from
low to high intensity of helicity injection (controlled by η0)
and from mostly large-scale injection to injection equally
distributed over all scales (controlled by α). Two special
cases with η0 ¼ 0.03, α ¼ 1.75 and η0 ¼ 10, α ¼ −0.5 are
included to emphasize the effect of helicity. The corre-
sponding energy EðkÞ and normalized helicity HðkÞ=k
spectra are presented in Fig. 1. Both spectra are compen-
sated by Kolmogorov’s slope “−5=3” to highlight the
difference in comparison with conventional turbulence.
To get the flat energy and helicity spectra, we divide by
a slightly steeper slope (caused by intermittency), namely,
by k−1.69. One can compare the result of simulations with
the theoretically predicted energy spectrum [Eq. (6)], which
is shown by a solid line for each set of the helical forcing
parameters.

Panels 1(a) and 1(b) demonstrate the cases of weak
helicity injection (η0 ¼ 0.3) in which passive helicity
does not change energy spectrum. The helicity spectrum
at α ¼ 0 scales as k−1, which looks like the spectrum for a
passive scalar. The moderate increase of α increases the
slope of the helicity spectrum only [panel 1(b)].
Panels 1(d), 1(e), and 1(f) show results for stronger

helicity injection (η0 ¼ 1) at which the helicity is becoming
active. Depending on α, the energy accumulates in certain
shells at large scales, i.e., in only four shells [panel 1(d)]
or in all shells with kn < 100 [panel 1(f)]. In these ranges,
the relative helicity tends to unity, which can be distin-
guished since HðkÞ=k (open circles) approaches EðkÞ
(closed circles).
Panels 1(h) and 1(i) correspond to a further gradual

intensification of helicity injection (η0 ¼ 3.32), which leads
to a steeper slope of the energy spectrum. Again depending
on α, this can be observed in a part [panel 1(h)] or almost
the entire inertial range [panel 1(i)]. In the latter case, we
find EðkÞ ∼ k−1.84 over three decades of scales.
Panel 1(g) presents a special case with the largest

η0 ¼ 10 and lowest α ¼ −0.5. Two inertial ranges can
be recognized with pronounced active and passive behavior
of helicity. A completely helical turbulent cascade, that
is EðkÞ ∼ k−7=3 and HðkÞ ∼ k−4=3, appears at k < 10.
Kolmogorov’s slope is recovered in the rest of the scales
and there is a sharp border between the two ranges.
Panel 1(c) shows the opposite case with the lowest

η0 ¼ 0.03 and largest α ¼ 1.75. This combination of the
forcing parameters provides a passive cascade of the
helicity at the large scale and an active one at the small
scale. This active range of scales is characterized by the
high relative helicity, which decelerates the energy cascade
and results in the pileup of energy near the small-scale limit
of the inertial range. This regime exaggerates the realistic
scenario of small-scale helicity injection. However, it has
particular interest because the result is similar to the
bottleneck effect [24,27]. Note, that spectra calculated
using theoretical formula (7), which are shown by solid
lines in Fig. 1, fit well the numerical spectra in all cases.
The basic feature of the inertial range dynamics is

the constant spectral energy flux. Figure 2(a) presents the
spectral fluxes of energy and helicity for three cases. The
energy fluxes are not disturbed by the forcing Eq. (11), even
for a very strong injection of helicity. Apparently, the helicity
spectral flux is influenced by distributed helicity forcing.
The helicity spectral flux continually approaches the asymp-
tote k with an increase of η0 and α:ΠHðkÞ ∼ kΠEðkÞ is
the theoretical limit, which corresponds to the maximally
helical turbulent cascade.
Instead of the relative helicityHrðkÞ, the final expression

(9) includes δðkÞ. Both quantities HrðkÞ and δðkÞ indicate
scales where the energy is affected by the helicity
[HrðkÞ≳ 0.7 or δðkÞ≲ 0.3]. But δðkÞ has a constant slope
if the energy spectrum obeys a power law in some range of
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scales [see Fig. 2(b)]. Therefore, we conclude that the
”free” part of the energy δðkÞ is the more appropriate
quantity which controls the efficiency of the spectral energy
transfer.
Following Eq. (9), we should expect δðkÞ ∼ k2 if the

power law “−7=3” appears in the energy spectrum. This is
too steep to be realized over the whole inertial range.
The limited range of scales with one order of magnitude is
more realistic, as we find for the case in Fig. 1(g). The
affected range of scales shortens as the helical correction
strengthens. This is another argument in favor of the
analogy with the bottleneck effect.
Our results expand the common point of view that the

helicity is a possible trigger for inverse energy transfer,
which support long-living large-scale vortical structures
in astrophysical and geophysical flows [28]. We find a
more modest role for helicity in reducing the efficiency of
spectral energy transfer to small scales. There is no inverse
cascade, just energy accumulation due to the hindered
cascade in the highly helical flow. For example, we suggest
that the helical bottleneck effect could be responsible for
steepening the experimentally obtained energy spectrum in

(a)

(b)

FIG. 2 (color online). (a) Spectral fluxes of energy and helicity
(inset). (b) Distributions of δðkÞ ¼ 1 − jHrðkÞj.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1 (color online). Energy [EðkÞ, points] and normalized helicity [HðkÞ=k, circles] spectra compensated by k−1.69 (Kolmogorov’s
slope with intermittency correction) are shown in a grid of panels for each pairs of parameters η0 ¼ 0.3, 1, 3.32 (from top to bottom) and
α ¼ 0, 0.5, 1 (from left to right). Exceptional cases are panel (c) η0 ¼ 0.03, α ¼ 1.75 and panel (g) η0 ¼ 10, α ¼ −0.5. Theoretically
predicted helical correction to the energy spectrum ζðkÞ [defined by Eq. (7)] is shown by the solid line.
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a von Kármán swirling flow [23]. In that experiment, the
helicity was intensively injected by the blades at smaller
scales than the scale of energy injection by rotating discs
[29]. Another applicable situation might be a flow with
shear generated helicity, which is favorable for develop-
ment and intensification of tropical cyclones [19,30]. We
note that the spacial imbalance of helicity can support a
local intensification of vortical structures, even if the global
helicity is negligible.
We revise the conventional approach to the turbulent

energy cascade, based on Richardson-Kolmogorov phe-
nomenology, where the topology of emerging vortices is
ignored. This new generalization of the Kolmogorov
phenomenology takes into account the arbitrary spectral
distribution of helicity and describes a deviation from the
−5=3 power law for the energy spectrum. The immediate
consequence for the mean field theory is that an estimate
of the effective turbulent diffusivity has to consider the
helicity. This is an important message for physicists dealing
with subgrid models of turbulence.
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