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Utilizing a silicon nanobeam optomechanical crystal, we investigate the attractor diagram arising from
the radiation pressure interaction between a localized optical cavity at λc ¼ 1542 nm and a mechanical
resonance at ωm=2π ¼ 3.72 GHz. At a temperature of Tb ≈ 10 K, highly nonlinear driving of mechanical
motion is observed via continuous wave optical pumping. Introduction of a time-dependent (modulated)
optical pump is used to steer the system towards an otherwise inaccessible dynamically stable attractor in
which mechanical self-oscillation occurs for an optical pump red detuned from the cavity resonance. An
analytical model incorporating thermo-optic effects due to optical absorption heating is developed and
found to accurately predict the measured device behavior.
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Cavity-optomechanical systems involving interactions of
light and mechanical motion in a mechanically compliant
electromagnetic cavity [1] are of interest for precision
sensors [2,3], in nonlinear optics [4,5], and in the study of
macroscopic quantum systems [6,7]. To lowest order, the
mechanical displacement linearly modulates the frequency
of the optical resonance in a cavity-optomechanical system.
This, however, gives rise to an inherently nonlinear phase
modulation, and through radiation pressure backaction on
the mechanical element, yields nonlinear system dynamics
[8]. Much of the previous work has focused on the
linearized regime where the interaction with the optical
field still gives rise to a host of interesting phenomena such
as a modified spring constant [9], damping or amplification
of the mechanics [10], and electromagnetically induced
transparency–like slow-light effects [11,12]. Recently,
several experiments have pushed into the quantum regime
using backaction cooling to bring nanomechanical reso-
nators near their quantum ground state of motion [13,14].
In this Letter, we instead demonstrate new features and

tools in the nonlinear regime of large mechanical oscillation
amplitude. In contrast to the well-known static fixed points
of an optomechanical system [15], we are interested here in
the dynamic multistability associated with the finite-ampli-
tude mechanical limit cycles that result from radiation
pressure dynamic backaction. Previous experimental works
have shown that a blue-detuned laser drive can lead to
stable mechanical self-oscillations [16–20], and dynamic
bistability has been observed for a photothermally driven
micromechanical system [21] and in the collective density
oscillations of an atomic Bose-Einstein condensate inside a

Fabry-Perot cavity [22]. Theoretical predictions, however,
indicate that radiation pressure dynamic backaction can
lead to an even more intricate, multistable attractor diagram
[8]. In the present Letter we are able to verify the predicted
attractor diagram and, further, utilize a modulated laser
drive to steer the system into an isolated high-amplitude
attractor. This introduces pulsed control of nonlinear
dynamics in optomechanical systems dominated by radi-
ation pressure backaction, in analogy to what has been
shown recently for a system with an intrinsic mechanical
bistability [23].
We employ a one-dimensional optomechanical crystal

(OMC) cavity designed to have strongly interacting optical
and mechanical resonances [24]. The OMC structure is
created from a freestanding silicon beam by etching into it a
periodic array of holes which act as Bragg mirrors for both
acoustic and optical waves [25]. A scanning electron
micrograph (SEM) of an OMC cavity is shown in
Fig. 1(a) along with finite-element-method (FEM) simu-
lations of the colocalized optical [Fig. 1(b)] and mechanical
[Fig. 1(c)] resonances. To reduce radiation of the mechani-
cal energy into the bulk, the cavity is surrounded by a
periodic “cross” structure which has a full acoustic band
gap around the mechanical frequency [Fig. 1(a), green
overlay] [26].
The experimental setup is shown schematically in

Fig. 1(d). The silicon chip containing the device is placed
into a helium flow cryostat where it rests on a cold finger
at T ≈ 4 K (the device temperature is measured to be
Tb ≈ 10 K). Laser light is sent into the device via a tapered
optical fiber, which, when placed in the near field of the
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device, evanescently couples to the optical resonance of the
OMC [27]. A narrow linewidth, frequency tunable pump
laser is used to excite and measure the optical and
mechanical resonances of the OMC cavity. The transmitted
pump light is sent to a high-bandwidth photodetector (D1),
which is connected to a real-time spectrum analyzer (RSA)
for spectral analysis. Scanning the pump laser frequency
and measuring the time-averaged transmitted light intensity
yields a resonance dip at λc ¼ 1542 nm for the fundamen-
tal optical mode of the device under study in this work.
From the spectrum the intrinsic and taper-loaded energy
decay rate of the optical resonance is estimated to be
κi=2π ¼ 580 MHz and κ=2π ¼ 1.7 GHz, respectively.
Mechanical motion modulates the phase of the internal
optical cavity field, scattering the pump light into motional
sidebands which beat with the unscattered pump field
on the photodiode [13]. From the microwave spectrum
of the measured photocurrent at low pump power we
find the breathing mechanical mode to be at frequency
ωm=2π¼3.72GHz, with an intrinsic linewidth of γi=2π ¼
24 kHz. These device parameters put our system well into
the sideband resolved regime κ=ωm ≪ 1.
The interaction between the internal light field and the

mechanical motion is given by the interaction Hamiltonian,
Hint ¼ ℏg0â†â x̂, where â (x̂) is the optical (mechanical)
field amplitude, and g0 is the vacuum optomechanical

coupling rate. The mechanical displacement expectation is
given by x ¼ xzpfhx̂i, where the zero-point amplitude of the
resonator is xzpf ¼ ðℏ=2meffωmÞ1=2 ¼ 2.7 fm (estimated
using a motional mass meff ¼ 311 fg calculated from
FEM simulation). By calibrating the optically induced
mechanical damping versus pump power [13], we find
that g0=2π ¼ 941 kHz. In the device studied here, this
vacuum coupling rate is dominated by the photoelastic
component of the radiation pressure force [24].
The classical nonlinear equations of motion for the

mechanical displacement (x) and the optical cavity ampli-
tude (a ¼ hâi) are

ẍðtÞ ¼ −γi _xðtÞ − ω2
mxðtÞ þ 2ωmg0xzpf jaðtÞj2; ð1Þ
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Pin=ℏωL

p
is the effective drive amplitude of

the pump laser (input power Pin and frequency ωL), κe=2 is
the fiber taper input coupling rate, ωc is the optical
cavity resonance frequency, and ΔL ≡ ωL − ωc. For self-
sustained oscillations, where the motion of the oscillator is
coherent on time scales much longer than the cavity
lifetime, we can take the mechanical motion to be sinus-
oidal with amplitude A, xðtÞ ¼ A sinωmt. The optical
cavity field is then given by
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ffiffiffiffiffi
κe
2

r
aineiΦðtÞ

X
n
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where ΦðtÞ ¼ −βm cos ωmt and αn ¼ JnðβmÞ=
½κ=2 þ iðnωm − ΔLÞ�. Here, Jn is the Bessel function of
the first kind, nth order, and its argument is the unitless
modulation strength βm ¼ ðAg0Þ=ðxzpfωmÞ. For βm ≪ 1

only the terms oscillating at the mechanical frequency,
ωm, are appreciable, so the interaction can be linearized,
and only the first-order radiation pressure terms are present.
However, for β ≥ 1 the higher harmonic terms at each nωm
have significant amplitude and backaction force.
The thermal amplitude is too small to enter the nonlinear

regime in our devices ðβth ≈ 0.01Þ; however, backaction
from the pump laser can provide amplification for driving
the mechanical resonator into the high-β, nonlinear regime.
The resulting mechanical gain spectrum in the amplitude-
detuning plane (the attractor diagram) can be solved for by
calculating the energy lost in one mechanical cycle
(Pfric ¼ meffγih_x2i) and comparing it to that gained (or lost)
from the optical radiation force [Prad ¼ ðℏg0=xzpfÞhjâj2 _xi]
[8]. Figure 2(a) shows a plot of the gain spectrum for the
parameters of the device studied here with a laser pump
power of Pin ¼ 151 μW. Imposing energy conservation,
Prad=Pfric ¼ þ1, yields the steady-state solution contour
lines. Although the entire contour is a physical solution,

(a)

(b)

(c)

(d)

FIG. 1 (color online). (a) SEM of the OMC cavity surrounded
by a phononic shield (green). (b) FEM-simulated electromagnetic
energy density of the first-order optical mode. (c) FEM-simulated
mechanical mode profile (displacement exaggerated). In (b) the
color scale bar indicates large (red) and small (blue) energy
density, whereas in (c) the scale bar indicates large (red) and small
(blue) displacement amplitude. (d) Simplified schematic of the
experimental setup. WM: wave meter, Δϕ: electro-optic phase
modulator, D1: pump light detector, D2: probe detector, VOA:
variable optical attenuator, PM: power meter. Pump and probe
lasers are not mutually coherent to avoid interference effects and
we modulate the probe and monitor the detected tone using a
lock-in amplifier (not shown).

PRL 115, 233601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 DECEMBER 2015

233601-2



the equilibrium is only stable when the power ratio
decreases upon increasing the mechanical amplitude,
ð∂=∂βÞðPrad=PfricÞ < 0 (i.e., stability is found at the
“tops” of the contours) [8]. At higher powers (black
contours) we see that for many laser detunings there
are several stable mechanical-amplitude solutions dem-
onstrating the presence of dynamic multistability.
In the device studied here, there is a thermo-optic

frequency shift of the optical cavity caused by heating
due to intracavity optical absorption. The thermal time
constant of the device structure is slow relative to the
optical cavity coupling rate, but fast compared to the laser
scan speed. Absorption heating can thus be modeled as a
shift of the laser detuning proportional to the average
intracavity photon number (n̄a), ΔL ¼ ΔL;0 þ cton̄a, where
ΔL;0 is the bare laser-cavity detuning in the absence of
thermo-optic effects. The per photon thermo-optic fre-
quency shift of the optical cavity is measured to be
cto=2π ¼ −216 kHz. Including this effect, the shifted
contours are shown in Fig. 2(b) as a function of the bare
detuning ΔL;0. The solid lines with arrows indicate the
expected path traversed by the mechanical resonator during
a slow laser scan from lower to higher laser frequency (left
to right) at each power. The dashed lines are contours that
are either unstable, or unreachable by this adiabatic laser
sweep. Note that while thermo-optic frequency shifts can

be up to 10ωm on resonance, the contours traced out by the
laser sweep are only slightly shifted, as the laser never
reaches the cavity resonance due to the thermo-optic
bistability.
In Figs. 2(c)–2(g) we explore the lowest-lying contour of

the attractor diagram by measuring the optical transmission
as the pump laser is tuned from red to blue across the
optical cavity resonance with different fixed optical input
powers. At low optical input powers (Pin < 0.3 μW), only
a single resonance dip associated with the bare optical
cavity is observed. Upon increasing the laser power,
radiation pressure backaction amplifies the thermal motion
of the mechanical resonator beyond threshold and into a
large amplitude state. When this occurs a large fraction of
the intracavity photons are scattered, resulting in addi-
tional transmission dips near each detuning ΔL ¼ nωm.
Physically, mechanical oscillations at the nth sideband
detuning are generated by a multiphoton gain process
involving n photon-phonon scattering events. This stair-
step behavior is seen in the measured transmission spec-
trum of both Fig. 2(c) and Fig. 2(e). The theoretically
calculated spectra for our measured device parameters are
shown in Fig. 2(d), showing good agreement with the
measured spectra after including thermo-optic effects.
Figure 2(f) shows the microwave noise power spectrum
at the highest measured input power (Pin ¼ 151 μW),

(a)

(b)

(c)
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FIG. 2 (color online). (a) Calculated gain spectrum for the OMC in the amplitude-detuning plane. Color scale indicates ðPrad=Pfric − 1Þ
at Pin ¼ 151 μW. Solid line curves indicate power-conserving solution contours at selected input powers: 0.65 μW (white), 6.5 μW
(grey), 151 μW (black). (b) Same as (a) with contours now shifted by estimated thermo-optic effects (the intensity plot of the gain is left
unshifted for reference). Solid line curves indicate the path taken by the mechanical oscillator during a slow laser frequency sweep. Dashed
lines are contours which are either unstable or unreachable using this method. (c) Image plot of the measured optical transmission spectrum
versus laser detuning and power. The wavelength scan rate (∼300 GHz=s) is much slower than the internal dynamics of the
optomechanical system. (d) Image plot of the theoretically calculated transmission spectra including thermo-optic shifts and a slow
drift in the optical resonance frequency over the course of the measurement from low to high power. Spectra in (c) and (d) are normalized at
each power level. (e) Plot of the normalized optical transmission from scans in (c) at Pin ¼ 0.12 μW (top panel), 0.65 μW (center panel),
151 μW (bottom panel). The blue points are measured data and the red curves are the theoretical model. (f) Power spectral density of
transmitted pump photocurrent near the mechanical frequency for Pin ¼ 151 μW. (g) Total integrated power of spectra in (f). Measured
data are plotted as green circles, with the theoretical model (up to a scale factor) shown as a solid red curve. The red arrow in each plot
indicates the laser scan direction.
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indicating a significant optical spring effect (∼2 MHz) with
complicated detuning dependence. Figure 2(g) shows the
integrated power in the first motional sideband versus
detuning. The discrepancy between the measured and
modeled curves (the solid red line) near the largest trans-
mission dip at the highest power is likely due to the effects
of nonlinear optical absorption at high intracavity photon
numbers, which are not included in our model.
It is readily apparent from Fig. 2(a) that at large optical

powers (the black contour) there are also a number of
isolated attractor contours at higher oscillation amplitudes.
Here, we utilize external time-dependent driving of the
mechanical mode to explore the lowest-lying isolated
attractor on the red side of the optical cavity (ΔL < 0),
where the linearized theory predicts only damping of the
mechanical mode. An electro-optic modulator (EOM) is
utilized to phase modulate the incoming light field [see
Fig. 1(d)], resulting in an oscillating force inside the cavity
which drives the mechanical resonator towards higher
amplitudes. The experimental sequence is displayed in
Fig. 3(a). We start with the pump laser switched on at a
power of Pin ¼ 43 μW, the laser detuned to the red side
of the cavity resonance, and the phase modulation off
(βEOM ¼ 0), which initializes the mechanical resonator into
a cooled thermal state with βm ≈ 0. The EOM phase
modulation is then turned on, which rings up the mechani-
cal resonator. Following ring up, the pump laser is tuned to
a starting detuning of ΔL, completing the initialization

sequence. Finally, the modulation is switched off
(βEOM → 0) and the system relaxes into a final mechanical
oscillation amplitude and laser-cavity detuning.
A time domain signal of the modulated transmitted light

field is measured at each stage of the above procedure by
mixing down the measured photocurrent on the RSA [see
Figs. 3(b) and 3(c)]. In order to determine the mechanical
amplitude βm and the true laser-cavity detuning ΔL, we use
a second counterpropagating weak optical probe laser of
frequency ωp to obtain a cavity spectrum [see Fig. 1(d) and
its caption for details]. When the mechanical amplitude is
large (βm ≳ 1), the standard single resonance dip is trans-
formed into a multifeatured spectrum with resonance dips
at the motional sidebands, Δp ≡ ωp − ωc ¼ nωm [see the
panels in Fig. 3(d)]. A fit to the probe spectrum is
performed using Eq. (3), with βm and ωc as free parameters.
A plot of the microwave power spectrum of the photo-
detected transmitted pump light is also plotted in Fig. 3(e),
showing the linewidth narrowing and frequency shift in the
mechanical resonator as it transitions between different
states. Repeating the measurement for different initial states
and recording the resulting final states reveals the flow in
the underlying attractor diagram. For clarity, only a
representative subset of the 38 measurement runs per-
formed is presented in Fig. 3(f). We find that for a narrow
range of initial conditions (occurring in 22 of the 38
measurement runs), after the modulation is switched off,
the system remains trapped close to the predicted top of the

(a)

(b) (c)

(f)

(d)

(e)

FIG. 3 (color online). (a) Schematic showing the state preparation and measurement sequence used to explore the higher-lying
attractors. (b) Measured time-domain signal of one quadrature of the transmitted pump photocurrent during the turn-on of the EOM
drive (t ¼ 0). The signal is mixed down from the mechanical resonance frequency at 3.7 GHz to 150 kHz. (c) Measured transmitted
pump photocurrent (mixed down to 500 kHz) during the turn-off of the EOM drive modulation. Here, we show a case where the system
remained trapped in the high-amplitude state. (d) Transmission scans of the counterpropagating probe laser during each sequence of the
measurement. Blue points are measured data and red curves are fits to the data. (e) Mechanical power spectrum (green points) during
each sequence of the measurement. (f) Plot of the normalized gain spectrum in the detuning-amplitude plane with an overlaid stable
solution contour (the black solid curve) at Pin ¼ 43 μW. Color scale is the power ratio, ðPrad=Pfric − 1Þ. The dashed black curve
indicates the unstable portion of the contour. The red data points indicate the initial (βm, ΔL) values and the grey data points indicate the
final values. The white arrows connect the initial and final pairs but do not indicate the actual path taken by the system.
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higher amplitude attractor at βm ≈ 3.5 and ΔL=ωm ≈ −0.7.
For more negative initial detunings or lower initial
mechanical amplitudes, the system relaxes into the trivial
low-amplitude state or gets caught on the lowest-lying
contour explored in Fig. 2 (for detunings ΔL=ωm > −0.5,
the system could not be stably initialized due to the thermo-
optic effect).
The results presented here represent an initial exploration

of the nonlinear attractor diagram of an optomechanical
system where the dominant nonlinearity is that of the
radiation pressure interaction. Because of the limited drive
amplitude of the electro-optic modulator used in this Letter
(βEOM ≲ 3.5), we are limited to exploring only the lowest
red-side attractor. With the ability to apply larger drives, or
to rapidly detune the laser, it should be possible to reach
higher-lying islands, and to more fully explore the attractor
diagram shown in Fig. 2(a). Further understanding of the
latching effects in these measurements should also pave the
way to exploiting them for use in metrology experiments as
the dynamics that govern whether the oscillator stably
latches into an attractor can be a very sensitive function of
the oscillator’s displacement [8], thus yielding a precise
measurement of the oscillator’s environment or state. This
latching also allows for systems with memory due to the
hysteretic nature of the nonlinearity, as in Refs. [23,28–31].
Finally, in future devices where the optomechanical cou-
pling rate is larger, these same nonlinearities can lead to
quantum mechanical effects which have thus far only been
explored theoretically [32].
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