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In this Letter we present a novel version of “long-lived” gluinos in supersymmetric models with the
gluino lightest ordinary supersymmetric particle (LOSP) and the axino lightest supersymmetric particle.
Within certain ranges of the axion decay constant fa < 1 × 1010 GeV, the gluino mass bounds are reduced
to less than 1000 GeV. The best limits can be obtained by looking for decaying R hadrons in the detector
where the gluino decays to a gluon and axino in the calorimeters. Supersymmetry (SUSY) models with a
gluino LOSP can occur over a significant region of parameter space in either mirage mediation or general
gauge-mediated SUSY breaking models. The gluino LOSP is not constrained by cosmology, but in this
scenario the axion or axino may be a good dark matter candidate.
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Introduction.—Supersymmetric models with nonuniver-
sal gaugino masses are well defined even in the range of
parameters for which gluinos are the lightest supersym-
metric particle (LSP) [1–5]. The most stringent constraint
in this case comes from cosmology. Although gluinos are
Majorana particles and annihilate with a strong interaction
rate, there are still too many of them left over in the early
Universe. They form stable, hadronic bound states and
searches for heavy hydrogen essentially rule out this
possibility [6–8]. In this Letter we show that when gluinos
are the lightest ordinary supersymmetric particle with an
axino LSP we clearly evade these cosmological bounds.
Moreover, we show that collider bounds on the gluino mass
can be significantly reduced for an axion decay constant in
the allowed region with fa < 1 × 1010 GeV.
There are presently strong limits on gluino masses coming

from the first run of the LHC. In particular, we are interested
in the bounds for long-lived gluinos. We consider recent
CMS results. These come from searches for R hadrons
which travel through the detector [9] or for R hadrons which
stop in the detector and then decay [10]. For long-lived
gluinos the bounds depend on the fraction, f, which initially
hadronizes as a gluino-gluon bound state [9]. For f ¼ 0.1,
the bounds requirem~g > 1233 GeV or even greater, depend-
ing on the model for propagation. These bounds only require
data from the central tracker. The track that the charged R
hadron leaves in the central tracker must satisfy jηj < 2.1,
pT > 45 GeV=c and must have significant dE=dx. The
track must also be isolated in both the tracker and the
calorimeter with

P
pT < 50 GeV=c where the sum is over

all tracks (except the candidate track) within a cone
ΔR < 0.3 rad. Thus if the R hadron should decay in the
tracker or calorimeter it will not pass these cuts. However, if
the lifetime is long enough such that the gluino decays
outside the window of the collision region, it will be counted
in this event sample. Therefore, in order to evade these
bounds, the gluino must decay fast enough so that it leaves

energy in the calorimeters. Thus, we need hβicτ ~g ≲ 2.5 m or
τ ~g ≲ 8.3ðhβiÞ−1 × 10−9 s. If the gluino does live long
enough to make it to the muon system, then it will be
constrained by other data sets which give just as strong
bounds on the gluino mass. The limits are slightly less strong
for gluinos which are long lived and stop in the detector [10].
In this case the most stringent bound is m~g ≥ 1000 GeV
for gluino lifetimes in the range, 10−6 s < τ ~g < 103 s.
However, any event which satisfies the latter stopped bounds
was already constrained by the former long-lived bounds.
These limits can be applied to any theory where the

gluino is the next-to-lightest supersymmetric particle which
decays into a gluon and a neutral LSP. It has applications to
gauge-mediated supersymmetry (SUSY) breaking models
where the gluino decays to a gluon and a Goldstino [11] or
to split SUSY models where the gluino decays to a quark-
antiquark pair and a neutralino LSP [12].
In this Letter we consider another scenario where the

gluino is the lightest ordinary supersymmetric particle
(LOSP) with an axino LSP. The strong CP problem has a
natural solution in terms of the Peccei-Quinn-Weinberg-
Wilczek axion [13–15]. Its modern form is in terms of an
invisible axion of the Kim-Shifman-Vainshtein-Zakharov
type [16,17] or the Dine-Fischler-Srednicki-Zhitnisky type
[18,19]. In a supersymmetric theory the axion has a scalar
partner, the saxion, and a fermionic partner, the axino [20,21].
The saxion typically has a mass of the order of the gravitino
mass, while the axino can be much lighter [22–25].
Supersymmetric models with nonuniversal gaugino

masses, such asmirage mediation SUSY breaking or general
gauge mediation have significant ranges of parameters where
the gluino is the LSP. For example, in a recent study of
mirage mediation in an SO(10) grand unified theory (GUT)
[5], the gaugino mass formula at the GUT scale is given by

Mi ¼
�
1þ g2Gbiα

16π2
log

�
MPl

m16

��
M1=2; ð1Þ
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where bi ¼ ð33=5; 1;−3Þ for i ¼ 1; 2; 3,M1=2 is the overall
mass scale, and α is the ratio of the anomaly mediation to
gravity mediation contributions. For an α in the range
3 ≤ α ≤ 4, we find that the gluino is the LSP. Also, in
the case of general gauge mediation (see Ref. [3]), for
messenger scales of the order of the GUT scale, the gravitino
is heavy and we find that it is quite natural to have a gluino
LSP. We note that these models have the very interesting
property of precision gauge coupling unification [4,26]; i.e.,
the gauge couplings unify at the GUT scale to high accuracy,
thus requiring little or no threshold corrections at MGUT.
However, as was discussed earlier, such theories are unac-
ceptable cosmologically. Therefore, it becomes advanta-
geous to combine these models with the axion solution to
the strong CP problem. The gluino is then the LOSP with an
axino LSP.
Gluino-axino coupling and gluino lifetime.—We con-

sider the supersymmetrized axion multiplet coupling to the
SU(3) gauge sector. We have [27,28]

Leff ¼ −
αs

2
ffiffiffi
2

p
πfa

Z
d2θAWaαWa

α þ H:c:; ð2Þ

where the axion superfield,

A ¼ sþ iaffiffiffi
2

p þ
ffiffiffi
2

p
ðθψaÞ þ ðθÞ2FA; ð3Þ

and the gauge superfield strength is given by

Wa
α ¼ −iλaα þ

�
δβαDa −

i
2
ðσμσ̄νÞβαGa

μν

�
θβ þ ðθÞ2σμα _αDμλ̄ _α:

ð4Þ

We define the four component Majorana spinors for the
gluino and axino fields by

~g ¼
�−iλ

iλ̄

�
; ~a ¼

�
ψa

ψ̄a

�
: ð5Þ

With this notation, we have

Leff ¼ αs
8πfa

½aðGaμν ~Ga
μν þDμð ~̄gγμγ5 ~gÞÞ

þsðGaμνGa
μν − 2DaDa þ 2~̄igγμDμ ~gÞ

þ i ~̄aGa
μν
½γμ; γν�

2
γ5 ~ga − 2 ~̄a~gaDa�. ð6Þ

We then find the gluino decay rate (neglecting the axino
mass) given by

Γ~g→ ~ag ¼
α2sm3

~g

128π3f2a
: ð7Þ

Thus, the gluino lifetime for particular values of fa and the
gluino mass is given by

τ ~g→ ~ag ¼ 3 × 10−8 s
ðfa=1010 GeVÞ2
ðm~g=850 GeVÞ3 : ð8Þ

Therefore, as an example, for values of fa ≤ 0.7 ×
1010 GeV and an average gluino velocity, β ∼ 1

2
, the gluino

mass bound may reduce to m~g ≳ 850 GeV.
Conclusion.—We have presented a novel version of

gluino LOSPs in supersymmetric models with an axino
LSP. Within certain ranges of the axion decay constant
fa < 1 × 1010 GeV, the gluino mass bounds are reduced to
less than 1000 GeV. The best limits can be obtained by
looking for decaying R hadrons in the hadronic calorim-
eters. Such decays will produce jets deep in the calorimeter.
SUSY models with a gluino LOSP can occur over a
significant region of parameter space in either mirage
mediation or general gauge-mediated SUSY breaking
models. Since the gluino LOSP is no longer constrained
by cosmology, it would now be interesting to analyze the
possibility of axion or axino dark matter in this scenario.
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