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We show that information about scattering data of a quantum field theory can be obtained from studying
the system at finite density and low temperatures. In particular we consider models formulated on the lattice
that can be exactly dualized to theories of conserved charge fluxes on lattice links. Apart from eliminating
the complex action problem at nonzero chemical potential μ, these dualizations allow for a particle world
line interpretation of the dual fluxes from which one can extract data about the two-particle wave function.
As an example we perform dual Monte Carlo simulations of the two-dimensional O(3) model at nonzero μ
and finite volume, whose nonperturbative spectrum consists of a massive triplet of particles. At nonzero μ
particles are induced in the system, which at sufficiently low temperature give rise to sectors of fixed
particle number. We show that the scattering phase shifts can be obtained either from the critical chemical
potential values separating the sectors or directly from the wave function in the two-particle sector. We find
that both methods give excellent agreement with the exact result. We discuss the applicability and
generality of the new approaches.
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Inmany quantum field theories the low energy excitations
are very different from the field content of the elementary
Hamiltonian or Lagrangian. Indeed, excitations, rather than
fundamental degrees of freedom, are responsible for many
important phenomena, ranging from superconductivity in
condensed matter to confinement and dynamical mass
generation in quantum chromodynamics (QCD). These
excitations are often referred to as particles (or quasiparticles
in condensed matter literature) with particular masses,
charges, and interactions, although their internal structure
may be rather complicated. For a satisfactory theoretical
description nonperturbative methods are needed, often
complemented with numerical simulations.
In the approach discussed here we consider lattice field

theories with a chemical potential μ. In recent years there
was quite some progress with finding so-called dual
representations (see Refs. [1,2] for reviews), which provide
an exact mapping to new (dual) degrees of freedom, which
are fluxes for matter and surfaces for gauge fields. Initially,
dualization was motivated to overcome the complex action
problem (at nonzero μ the action S is complex and the
Boltzmann factor e−S cannot be used as a probability in a
Monte Carlo simulation). Here, we show that very precise
information about scattering phases and interactions can be
obtained based on two simple observations. 1. At finite
volume and zero temperature the one, two, three, etc.,

charge sectors are separated by finite energy steps, and
hence these charges will appear in the system at certain
chemical potential thresholds μ1; μ2; μ3;…, the difference
of which contains information about the interaction energy
of particles carrying charges. 2. The dual variables allow a
particle world line interpretation from which the multi-
particle ground state wave function can be obtained.
The latter in principle contains all the information about
the interactions. It is these two observations that are the
cornerstone of the two methods we develop in this work:
the charge condensation method and the dual wave
function method, respectively.
We develop the ideas using the two-dimensional O(3)

model, and discuss their generality in the end. In addition to
being an important condensed matter system, the O(3)
model is a widely used toy theory for QCD because of
common features such as asymptotic freedom, a dynami-
cally generated mass gap, and topological excitations.
Moreover, there exist exact results [3] for the scattering
phase shifts, i.e., the physical observables that we aim at in
our new approach. Suitable dual representations at nonzero
μ are known [4,5] and the basics of the finite density
behavior were discussed for the related case of the O(2)
model in Ref. [6].
The Lagrangian of a quantum field theory typically

shows some continuous symmetries resulting in
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corresponding conserved Noether charges. These sym-
metries and charges play a twofold role in our approach:
when transforming the theory to the dual representation the
symmetries give rise to constraints of the dual variables
making flux conservation explicit. The resulting “world
lines of flux” transport the corresponding charge in space
and time, and the particle number turns into a topological
invariant: the winding number of the corresponding flux
around the compact Euclidean time.
The second important aspect of the symmetries and the

corresponding charges is that a chemical potential can be
coupled to the associated charge, which then can be used to
populate the corresponding charge sector. In the dual
representation the chemical potentials introduce an addi-
tional weight for the winding number of the corresponding
flux lines.
At sufficiently low temperature T and finite volume one

can control the particle number with the chemical potential
and systematically probe the system in the different charge
sectors, which are separated by the aforementioned critical
values μi, i ¼ 1; 2; 3;… of the chemical potential. The
critical values μi are clearly marked by steps when plotting
the expectation value of the chargeQ at low T as a function
of μ (see Ref. [6] and Fig. 1 below). In the presence of a
mass gap m, the (“Silver blaze”) range from μ ¼ 0 to
μ ¼ μ1 corresponds to the charge-0 sector; no particle is
present, and for sufficiently large spatial volume one has
μ1 ¼ m. The interval μ ∈ ðμ1; μ2Þ delimits the charge-1
sector, where μ2 corresponds to the energy of the lowest
charge-2 state, i.e., containing two particle masses plus
their interaction energy [7]. At finite volume, it is exactly
this two-particle energy that can be related to scattering
data using the Lüscher formula [9–11], and analyzing the
two-particle condensation threshold μ2 as a function of the
volume constitutes our first approach to extract scattering

data from nonzero density and finite volume. We refer to
this approach as the “charge condensation method.”
Our second approach—which we refer to as the “dual

wave function method”—is based on a direct analysis of
the dual fluxes in the two-particle sector, i.e., the interval
μ ∈ ðμ2; μ3Þ, where μ3 marks the onset of the charge-3
sector. In this interval we analyze the two winding flux
loops that characterize the charge-2 sector and determine
the distribution of their spatial distance, which we relate to
the two-particle wave function, from which we again
compute scattering data.
Both methods are presented in detail for the 2D O(3)

model. We begin with discussing the dual representation as
derived in Ref. [4] where the details of the dualization and
also the conventional form of the model are presented. We
consider the O(3) model with a single chemical potential
coupled to one of the conserved charges. The conventional
degrees of freedom are O(3) rotors and the chemical
potential is coupled to the 3-component of the correspond-
ing angular momentum. In the dual form the partition sum
Z is exactly rewritten into a sum over configurations
fm; l; kg of three sets of dual variablesmx;ν ∈ Z, lx;ν; kx;ν ∈
N on the links ðx; νÞ of aNt × Ns lattice (periodic boundary
conditions, lattice constant a):

ZðμÞ ¼
X

fm;l;kg
BJ½m; l; k�e−aμ

P
x
mx;0

×
Y
x

δ

�X
ν

½mx;ν −mx−ν̂;ν�
�
: ð1Þ

Each configuration of the variables mx;ν, lx;ν, kx;ν comes
with a real non-negative weight BJ½m; l; k� that depends on
the coupling J. BJ½m; l; k� is given explicitly in Ref. [4], but
is irrelevant for the discussion here. A second weight factor

e−aμ
P

x
mx;0 originates from the chemical potential μ that

couples to the temporal component of the current mx;ν (in
our notation ν ¼ 0, 1 and ν ¼ 0 denotes Euclidean time).
Obviously, all weights are real and positive such that the
complex action problem is solved in the dual formulation
for arbitrary μ.
The dual variables mx;ν, which correspond to one of the

O(2) subgroups of O(3), obey constraints at each site x. The
product of Kronecker deltas δð� � �Þ enforces ∇ ~mx≡P

ν½mx;ν −mx−ν̂;ν� ¼ 0 ∀ x, which is a discrete version
of a vanishing divergence condition. Thus, the flux mx;ν is
conserved and the admissible configurations of mν-flux are
closed loops.
Since the mν-flux must form loops, the term in Eq. (1)

that multiplies μ can be written as a
P

xmx;0 ¼ aNtw½mν�,
where w½mν� is the total winding number ofmν-flux around
the compact time direction with extent aNt ≡ 1=T (we use
natural units with kB ¼ ℏ ¼ c ¼ 1). Thus, we identify the
winding number w½mν� as the particle number in the dual
formulation.

FIG. 1 (color online). The charge Q as a function of μ (in units
of the mass m). We compare different temperatures T at fixed
spatial extent Lm ¼ 4.4 (Nt ¼ 100, 200, 400, 1000 at Ns ¼ 20
using J ¼ 1.3).

PRL 115, 231601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 DECEMBER 2015

231601-2



The constrained mν-fluxes can be updated with a
generalization of the worm algorithm [12], while for the
other fluxes local Monte Carlo updates are sufficient. Most
of the Monte Carlo results presented in this Letter were
computed at fixed coupling J ¼ 1.3 (with some scaling
checks performed also at J ¼ 1.4 and J ¼ 1.5, i.e., closer
to the continuum). The temperature T ¼ 1=aNt was varied
by changing the temporal extent Nt of the lattice, and the
spatial size L ¼ aNs by changing Ns. Dimensionful
quantities are expressed in units of the mass m of the
lowest excitation, which was determined from propagators
in the conventional representation, and, at, e.g., J ¼ 1.3,
is am ¼ 0.222.
To substantiate the above discussion of sectors with fixed

Q, we show in Fig. 1 our J ¼ 1.3 results for Q ¼ hw½mν�i
as a function of μ for several low temperatures, at fixed
mL ¼ 4.4. Decreasing the temperature we indeed find the
expected formation of plateaus in Fig. 1, which correspond
to the sectors of fixed charge, and we can read off the
critical values μi. In a practical calculation one actually
determines the μi from the peaks of the corresponding
particle number susceptibility χ ¼ hðw½mν� −QÞ2i=L.
These susceptibilities are shown as a function of μ in
the top panel of Fig. 2, and we compare results for different
spatial extents L in units of m. The susceptibilities show
pronounced peaks, which we can use to determine the
values μi. We remark that the position μ1 of the first peak is
independent of L, while the second peak μ2 shifts to smaller
values when increasing L (see the discussion below).
We now make quantitative the above arguments con-

necting the critical chemical potentials μ1 and μ2 with the
mass m of the lightest particle and the energy of the two-
particle states. We write the grand-canonical partition sum
ZðμÞ with a grand potential ΩðμÞ in the form (Ĥ and Q̂
denote the Hamiltonian and charge operator)

ZðμÞ ¼ tre−ðĤ−μQ̂Þ=T ≡ e−ΩðμÞ=T: ð2Þ
The small-T limit is governed by the minimal exponents,
i.e., in each sector with charge Q the corresponding
minimal energy EQ

min dominates and the grand potential
in the different sectors is

ΩðμÞ!T~0

8>>>>><
>>>>>:

EðQ¼0Þ
min ¼ 0 for μ ∈ ½0; μ1Þ;

EðQ¼1Þ
min − μ ¼ m − μ for μ ∈ ðμ1; μ2Þ;

EðQ¼2Þ
min − 2μ ¼ W − 2μ for μ ∈ ðμ2; μ3Þ;

…;

ð3Þ

where we introduced the minimal two-particle energy W.
Note that in the charge-1 sector we assumed μ1 ¼ m; i.e.,
we neglected possible finite volume corrections (see below
for a cross-check).
The two-particle energyW can be calculated from μ1 and

μ2: the first two transitions between neighboring sectors

occur when 0 ¼ m − μ1 and m − μ2 ¼ W − 2μ2, respec-
tively, and thus we find

W ¼ mþ μ2 ¼ μ1 þ μ2: ð4Þ
So far we have not discussed the role of nonzero spatial

momenta of the states, which for our two-dimensional
model are given by 2πn=L ¼ 2πn=aNs, n ¼ 0; 1;…,
Ns − 1. We stress again that at very low T only states
with vanishing total momentum contribute to the partition
sum. Thus, in the charge-1 sector we have one particle at
rest, in the charge-2 sector two particles with opposite
spatial momentum, etc. We can combine this with the
discreteness of the momenta to understand the L depend-
ence of the μi, which is documented in the bottom panel of
Fig. 2, where we plot the values of μ1 and μ2 as a function
of L.
For μ1 we expect a dependence on L only when L

becomes smaller than the Compton wavelength of the

FIG. 2 (color online). Top: the susceptibility χ at fixed temper-
ature T=m ¼ 0.0045 as a function of chemical potential for
different spatial extensions L (Nt ¼ 1000 with Ns ¼ 20, 30, 40,
and 50). For each L we show the first two peaks corresponding to
the critical chemical potentials μ1 and μ2. Bottom: the critical
chemical potentials at the same temperature now as a function of
L. The solid curves are results of fits (exponential for μ1 and
power law for μ2).
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lightest excitation [13] and self-interactions around peri-
odic space alter the mass. This is indeed what we observe in
the right panel of Fig. 2. For μ2 a nonvanishing dependence
on L is expected throughout, since the box size L controls
the allowed relative momentum. Also, such a nontrivial
dependence is obvious from Fig. 2.
For a short ranged potential one can write the two

particle energy W as twice the energy of an asymptotically
free particle

W ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
; ð5Þ

where k denotes the relative momentum, which is shifted
from the values 2πn=L of the free case. In a finite volume,
only certain quantized values of k can account for the
scattering phase shift δðkÞ of the interaction and the
periodicity, as expressed by the Lüscher formula [9]

e2iδðkÞ ¼ e−ikL: ð6Þ
Varying L allows one to scan a whole range of momenta k.
The temperature must be low enough for pronounced
plateaus to form (see Fig. 1), which gives rise to the
following two conditions: T ≪ m and T=m ≪ 1=ðLmÞ2.
Our numerical results for this extraction are given in Fig. 3.
In the top panel we show our data for k as a function of L
and compare to the exact result [3] for “isospin 2,” which is
the relevant case for our choice of the chemical potential
that excites the 3-component of the O(3) angular momen-
tum. We also include results from the numerical spectros-
copy calculation in the two-particle channel [11] and find
excellent agreement of our results with the analytical and
numerical reference data. In the bottom panel we give the
results for the phase shift δðkÞ as a function of k, and again
find excellent agreement with the reference data.
Our second approach for the determination of scattering

data, the dual wave function method, is based on a direct
analysis of the flux variables mx;ν that carry the charge: in
the charge-2 sector we identify the two flux lines that wind
around the compact time and interpret their temporal flux
segments mx¼ðx0;x1Þ;ν¼0 ¼ 1 as the spatial position x1 of the
charge at time x0. Thus, for a given time x0 we obtain two

positions xð1Þ1 , xð2Þ1 and identify Δx ¼ jðxð1Þ1 − xð2Þ1 Þj as the
distance of the two charges at that time. Sampling over time
and many configurations we obtain the probability distri-
bution of the distance Δx, and the square root of this
distribution can be identified as the relative wave function
ψðΔxÞ of the two charges.
In Fig. 4 we show ψðΔxÞ for different spatial extents L.

Except for very small Δx the wave functions are very well
described by shifted cosines

ψðΔxÞ ∝ cosðkðΔx − L=2ÞÞ: ð7Þ

This finding confirms the applicability of Eq. (5): outside
the interaction range the wave functions for the relative

motion of the two particles are standing waves with
momenta k that are related to the scattering phase shifts
via Eq. (6). Thus, we can fit the data for ψðΔxÞ with the
cosines (7) and obtain the momenta k from that fit. The fit
results are also shown in Fig. 4 and in the legend we give
the corresponding momenta k. From these one again
obtains the phase shift δðkÞ via Eq. (6). The results from
the dual wave function method are included in Fig. 3 and
agree very well with the charge condensation method and
the reference data.
Let us summarize the two approaches for obtaining

scattering data presented here and comment on their
generality: both methods are based on simulations at
nonzero chemical potential μ at very low temperatures.
The charge condensation method relates the critical chemi-
cal potentials μ1 and μ2 to the two-particle energy, which in
turn can be related to the scattering phase shift via the
Lüscher formula. Technically, this method assumes that
nonzero chemical potential simulations are feasible, which,

FIG. 3 (color online). Results from the charge condensation
method (blue symbols, labeled CC) and the dual wave function
method (red, DWF) using different J and Ns. We compare our
results to the analytic solution [3] (full curves) and the analysis
based on two-particle spectroscopy [11] (blue, LW). In the top
panel we show the momenta k as a function of L and in the
bottom panel the phase shift δðkÞ versus k (k and L in units ofm).
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for example, is the case for the isospin potential in QCD.
The basic concept of the charge condensation method is
generalizable also to higher dimensions, in particular, the
relation of the condensation thresholds μ1, μ2 to the two-
particle energy. In higher dimensions a full partial wave
analysis would be necessary for complete information
about scattering, but at least the scattering length can be
extracted from the two-particle energy [9,10]. For the
second approach, the dual wave function method, the
chemical potential is adjusted such that the system is in
the charge-2 sector. This method is rather general in
arbitrary dimensions. The relative two-particle wave func-
tion can be determined from the fluxes in the charge-2
sector and in principle this gives access to the complete
scattering information.
We remark that both methods can be straightforwardly

generalized to three and more particles. A second remark
concerns the possibility to couple different chemical
potentials to different conserved charges. Using such a
setting one can also populate two-particle sectors with two
different particle species and study their scattering proper-
ties. While the charge condensation method is independent
of the representation of the system, we emphasize that the
dual wave function method requires a suitable dualization
and makes explicit use of the world line interpretation. The
latter method opens the possibility to study particles and
antiparticles, i.e., charges of opposite sign.
This exploratory Letter is a first step towards a full

understanding of the relation between low temperature
multiparticle sectors and scattering data. We believe that
this is an interesting connection to explore, and under-
standing the physics involved clearly goes beyond the
development of a new method for determining scattering
data in lattice simulations.
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determined from analyzing the flux lines in the charge-2 sector.
We show results for J ¼ 1.3 at T=m ¼ 0.0045 ðNt ¼ 1000Þ and
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