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It is well known that the bosonic Hubbard model possesses a Mott insulator phase. Likewise, it is known
that the Dicke model exhibits a self-organized superradiant phase. By implementing an optical lattice inside
of a high-finesse optical cavity, both models are merged such that an extended Hubbard model with cavity-
mediated infinite range interactions arises. In addition to a normal superfluid phase, two superradiant
phases are found, one of them coherent and hence superfluid and one incoherent Mott insulating.
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The Dicke model, describing the interaction ofN two-level
atoms with a common mode of the electromagnetic radiation
field, is a fundamental paradigm of quantum many-body
physics, which despite its long history is still the subject of
intensive theoretical research [1–16]. As one of its prominent
features, it exhibits a second-order quantum phase transition
between a normal phase, in which each atom interacts
separately with the radiation mode, and a collective phase,
in which all atomic dipoles align to form a macroscopic
dipole moment [3,6]. Only recently, a weekly dissipative
variant of this model has been experimentally realized close
to zero temperature [17,18] by implementing Bose-Einstein
condensates inside high-finesse optical cavities, which has
triggered widespread renewed interest [19].
A similarly elementary model of quantum many-body

physics is the Hubbard model, which gives an approximate
description of the dynamics of particles on a lattice in terms
of the competition of hopping between nearest neighbor sites
and on-site collisions [20,21]. The Bose-Hubbard model—
its bosonic variant—has been originally motivated in the
context of superfluid Helium but has received renewed
interest after its realization in optical lattices [22,23]. At
zero temperature, this model is known to possess a quantum-
phase transition from a superfluid to a Mott insulating
ground state [24], which was confirmed experimentally [23].
In the present work, we consider an extended scenario,

subsequently referred to as the open Dicke-Hubbard model,
which encompasses the physics of both the open Dicke
model and the bosonic Hubbard model. Related extensions
of Hubbard models have raised widespread interest recently
due to predictions of highly unconventional phenomena, as
for example overlapping, competing Mott-insulator states,
and strong atom field entanglement [25–28]. We study a
Bose-Einstein condensate subject to an external lattice
potential and interacting with a single light mode of a
high-finesse optical cavity. In accordance with previous
theoretical predictions [29,30], evidence is found for the
existence of three distinct quantum states in the ground

state phase diagram: a homogeneous superfluid (HSF)
phase, a self-organized superfluid (SSF) phase associated
with a spontaneously emerging density grating, and a self-
organized Mott-insulating (SMI) phase. The phase boun-
dary between the SSF and the SMI phase is observed via a
sudden change of phase coherence arising in time-of-flight
spectra, which provide an approximate image of momen-
tum space. By successively traversing the phase boundary
in both directions, we check that coherence is restored as
we re-enter into the SSF phase. This shows that the loss of
coherence observed in the SMI region cannot be attributed
to irreversible heating.
The experimental setup is sketched in Fig. 1. A cigar-

shaped Bose-Einstein condensate (BEC) of Na ≈ 5 × 104
87Rb-atoms (prepared in the upper hyperfine component of
the ground state jF ¼ 2; mF ¼ 2i) with Thomas-Fermi radii
ð3.1; 3.3; 26.8Þ μm is held in a miniaturized magnetic trap
with trap frequencies Ωx;y;z=2π¼ð215.6×202.2×25.2ÞHz.
The BEC is carefully superimposed to a longitudinal mode
(≈ 32 μm waist) of a high-finesse optical cavity extending

FIG. 1 (color online). Experimental setup. The beam diameters
and the BEC are not drawn to scale.
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along the z axis (see Fig. 1). The cavity exhibits a finesse of
344.000, a Purcell factor of 44 [31], and a field decay rate
κ ¼ 2π × 4.45 kHz. For a uniform atomic sample and left
circularly polarized light, the cavity resonance frequency is
dispersively shiftedwith respect to the case of an empty cavity
by an amount δ− ¼ 1

2
NaΔ− with an experimentally deter-

mined light shift per photon Δ− ≈ −2π × 0.36 Hz. With
Na ¼ 5 × 104 atoms δ− ¼ −2π × 9 kHz, which amounts
to −2κ; i.e., the cavity operates in the regime of strong
cooperative coupling. For σþ-light, Δþ ≈ −2π × 0.16 Hz.
The BEC is exposed to two standing wave light fields

(see Fig. 1) operating at the wavelength λ ¼ 803 nm, i.e.,
at large detuning to the negative side of the principle
fluorescence lines of rubidium at 780 and 795 nm. The
pump wave along the y axis may scatter photons into the
cavity due to its linear polarization along the x axis.
Its tunable strength is parametrized by the spectroscopically
determined depth εp of the associated light shift potential
in units of the recoil energy Erec≡ℏ2k2=2m¼2πℏ×
3.56kHz associated with photons of wave number
k ¼ 2π=λ. The frequency ωp of the pump wave can be
precisely tuned relative to the resonance frequency ωc of
the empty cavity. It is parametrized by the effective detuning
δeff ≡ δc − δ− with δc ≡ ωp − ωc. A second optical stand-
ing wave—referred to as the external lattice—is applied
along the x axis. It cannot scatter into the cavity due to the
linear polarization along the z axis and its fixed frequency
detuning of about 360 MHz from the cavity resonance
frequency. Thus, it merely provides an additional light-shift
potential with a fixed well depth of 14Erec. This lattice acts
to split the atomic sample into a collection of effectively
two-dimensional subsamples with any motion along the x
direction frozen out. The intracavity photon number Np is
precisely determined by counting the photons leaking out
through one of the cavity mirrors [32].
The experimental scenario discussed here has been

previously investigated without an external lattice in the
regimes ℏκ ≫ Erec [17] and ℏκ ≈ Erec [18]. In both cases,
the intracavity light intensity plotted across the (δeff , εp)
plane in the negative δeff half-plane shows the well-known
phase transition boundary first predicted by Hepp and Lieb
[3] for a closed system. When εp exceeds a critical value
εp;SSFðδeffÞ, the atomic sample scatters photons into the
cavity, and a self-organized optical lattice emerges.
The geometry of this intracavity lattice is determined by
the interference between the pump field and the intracavity
field. Via spontaneous symmetry breaking one of two
possible lattice potentials is formed trapping the atoms
in positions according to the white or black fields of a
chequerboard. As is shown in Fig. 2(a), an analogous
phenomenon is observed here in presence of the external
lattice. The graph shows the observed intracavity photon
numberNp plotted versus the effective detuning δeff and the
strength of the pump wave εp. It is recorded by repeating
the following protocol for varying values of δeff : (1) a BEC

is produced and carefully positioned; (2) the external lattice
(along the x direction) is ramped up during 90 ms to 14Erec;
(3) the pump strength εp is linearly ramped from zero to
16Erec in 10 ms. The observed Hepp-Lieb-Dicke phase
boundary εp;SSFðδeffÞ is highlighted by the black dashed-
dotted line.
Experimentally, we identify a HSF, a SSF and a SMI

phase via the following signatures: In the HSF phase, no
photons are found inside the cavity mode, and the
momentum spectrum of the atoms shows a pure BEC.
In the SSF phase, an intracavity light field arises, while
the momentum spectrum shows sharp Bragg resonances. In
the SMI phase, the intracavity light field increases, and the
momentum spectrum becomes featureless. By tuning δeff
and εp, we drive the system along the three trajectories
ABCD, DCD, and EFE that intersect the HSF, SSF, and
SMI phases in different regions of the (δeff , εp) plane,
connecting locations labeled by the capital letters A, B, C,
D, E, F in Fig. 2(a). Along these trajectories, in addition to
the intracavity photon number, we have recorded momen-
tum spectra by rapidly switching off all potentials, allowing
for a 25-ms long ballistic expansion and recording an
absorption image. Evaluating the widths of the Bragg
resonances in these spectra, we obtain information on
the degree of phase coherence of the sample along the
trajectory. The exemplary case of the path ABCD, which is
traversed in 12 ms, is detailed in Fig. 2(b). The upper panel
shows how δeff and εp are changed versus time, thus
successively passing the points “A, B, C, D.” In the lower
panel, the intracavity photon numberNp (red disks) and the
width (FWHM) W of the observed zero momentum Bragg
resonance (blue diamonds) with regard to the z direction are
plotted. A reference momentum spectrum for εp ¼ 0 is
shown in Fig. 2(c), labeled “1.” Note that as the pump
strength is raised to 5Erec without a notable intracavity
photon number yet arising, W slightly decreases. This
results from the concurrence of the following circum-
stances: (i) The initial condensate without perturbation
by the pump wave is strongly elongated in the z direction
(aspect ratio ≈10). (ii) This elongation is reduced by the
effect of the transverse Gaussian trapping potential along
the z axis added by the pump wave. (iii) The time of flight is
too short to be well within the far-field limit with respect to
the z axis in the ballistic expansion. We thus have chosen
“B” as the reference point for W, setting WðBÞ ¼ 1.
Shortly past point “B” the transition into the SSF phase
is observed, indicated by the sudden increase of the
intracavity photon number. The width of the zero momen-
tum Bragg peak practically maintains its reference value of
unity, which indicates complete coherence, until point “β”
is reached. This is supported by the two exemplary
momentum spectra shown for this section in Fig. 2(c),
labeled “2” and “3.” These spectra show increasing
population of higher order Bragg peaks. In “2,” the
ð�2; 0Þℏk Bragg peaks become visible, which result from
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the 5Erec deep pump lattice. The intracavity contribution to
the overall lattice potential is yet negligible. In “3,” the
visibility of the ð�1;�1Þℏk peaks results from the presence
of a notable intracavity photon number of 5.6 × 103, which
yields an overall lattice potential with a well depth of 5.8
Erec with respect to the plane spanned by the cavity and the
pump wave. Only when the point “β” is passed, which
corresponds to an intracavity photon number 8.2 × 103 and
8.0 Erec well depth, a sudden more than tenfold increase of
W is encountered. At this point, a kink in the dependence
of Np upon δeff appears, indicating an increase of the
superradiant scattering efficiency due to reduced particle
number fluctuations [34]. At point “C,” coherence is
completely lost as is also directly seen in the momentum
spectrum “4” in Fig. 2(c). In the subsequent section CD the
pump strength is reduced again to zero, and W is observed
to decrease again, finally reaching nearly the value initially
prepared at point “A.” The significant recovery of coher-
ence indicates that its loss at large lattice depths is not a
consequence of excessive heating, but rather indicates the
emergence of the SMI state. The particle number Na at
point “D” is reduced to 60% of the initial number at point
“A.” We attribute this to three-body loss associated with

the large peak density in the initial BEC of about
1.7×1014 cm−3, which is compatible with the loss para-
meter L¼ 1.8×10−29 cm6 s−1 in Ref. [35]. With Na¼5×
104 and four sites per λ3, the peak filling factor is 22 particles
per lattice site in the trap center. Using a harmonic approxi-
mation for the single particle ground state wave function for
lattice sites near the trap center (at point “β”) leads to the peak
density ρp ¼ 7.5 × 1015 cm−3 and the three-body decay rate
Γ3 ≡ Lρ2p ¼ 1010 s−1, i.e., a loss of about 50% of the
particles in 10 ms. Without the external lattice, the observed
particle loss is only on the 1% level [18]. One may roughly
compare the SMI phase with an MI phase in a conventional
optical lattice. Assuming a single band Hubbard model,
a numerical band calculation yields a nearest neighbor
tunneling parameter J ≈ 0.0058Erec at the point β. The
corresponding collision parameter in harmonic approxima-
tion is U ≈ 0.29Erec, such that U=J ≈ 50. Note, however,
that an evaluation accounting for the large filling factors in
our experiment should result in a smaller value of U=J.
In Fig. 3, the two paths DCD and EFE in the phase

diagram in Fig. 2(a) are considered. In these paths, the
effective detuning is held constant, while the pump lattice

(a) (b)

(c)

FIG. 2 (color). (a) The intracavity photon number is plotted versus the effective detuning δeff and the strength εp of the pump wave.
The HSF-SSF phase boundary is highlighted by a thick dashed-dotted black line. Six locations in the phase diagram are highligted by
capital letters A, B, C, D, E, F. Three trajectories, ABCD, DCD, and EFE, are indicated along which the degree of coherence of the
atomic sample is observed. The black squares labeled by greek letters α; β; γ show the observed boundary between the SSF and the SMI
phase. Corresponding BDMFT calculations are shown by the white-bordered black disks. (b) The upper panel quantifies the tuning of
δeff (black squares) and εp (green disks) along the path ABCD in (a). In the lower panel, the intracavity photon number Np (red disks)
and the width (FWHM)W of the observed zero momentum Bragg resonance (blue diamonds) with regard to the z direction are plotted.
The red and blue solid lines are linear fits, including the data points highlighted by black margins. The red dashed line corresponds to the
white delimited data points. The HSF-SSF and the SSF-SMI phase boundaries are defined by the intersections of the red and blue lines
with the ðNp ¼ 0Þ and ðW ¼ 1Þ lines, respectively. In (c), momentum spectra (in the (ky; kz) plane) are shown recorded at the locations
on the path ABCD indicated by the black arrows in (b).
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depth is linearly ramped from zero to some final value and
back to zero. Similarly, as in Fig. 2(b), two distinct transition
points are observed. Starting from the HSF phase, first the
SSF phase is entered indicated by the sudden rise of the
intracavity photon number, while the coherence measured by
W remains unaffected. Subsequently, a sudden increase of
W shows the emergence of the SMI phase (points “γ” and
“α” in Figs. 3(a) and (b)). As the pump strength is reduced
again, thecoherence isnearlycompletely restored. InFig.2(a),
all observed transition points “α, β, γ” for the SSF-SMI
transitions are plotted by black squares.
We have applied bosonic dynamical mean field theory

(BDMFT, see [36] and references therein) to calculate the
SSF-SMI transition boundary for 72 particles occupying 18
sites in the SSF phase, adapting previous studies [29,30] to
the configuration of Fig. 1. We assume that the intracavity

light field may be integrated out, although the light and
matter variables evolve on a comparable time scale
(ℏκ ¼ 1.25Erec). This greatly facilitates the calculations
but cannot account for the dynamical aspects of the
experimental system; e.g., the hysteresis observed when
the transition boundary between the HSF phase and the
SSF phase is crossed in different directions, seen in Fig. 3.
Occupations larger than four were not tractable with
reasonable calculational expense. The small number of
sites and atoms in the calculations was partly compensated
by an increased value of the atomic polarizability such that
q≡ NaΔ−=4κ is close to the experimental value q ¼ −1.
As the magnitude of q is increased, the calculated SSF-SMI
boundary shifts toward lower values of εp. The largest
value for jqj that we could handle with feasible calcula-
tional costs was jqj ¼ 0.2. The transition boundary for this
case is indicated in Fig. 2(a) by the white-bordered black
disks. The BDMFT treatment confirms the presence of a
SSF-SMI boundary but does not provide a quantitative
description of our observations.
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