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In one dimension, noninteracting particles can undergo a localization-delocalization transition in a
quasiperiodic potential. Recent studies have suggested that this transition transforms into a many-body
localization (MBL) transition upon the introduction of interactions. It has also been shown that mobility
edges can appear in the single particle spectrum for certain types of quasiperiodic potentials. Here, we
investigate the effect of interactions in two models with such mobility edges. Employing the technique of
exact diagonalization for finite-sized systems, we calculate the level spacing distribution, time evolution of
entanglement entropy, optical conductivity, and return probability to detect MBL. We find that MBL does
indeed occur in one of the two models we study, but the entanglement appears to grow faster than
logarithmically with time unlike in other MBL systems.
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Introduction.—Noninteracting particles in the presence
of disorder exhibit the phenomenon of Anderson localiza-
tion [1]. In one and two dimensions, an arbitrarily weak
amount of disorder is sufficient to localize all eigenstates
[2,3]. In three dimensions, a mobility edge, defined as a
threshold eigenstate with energy Ec that separates localized
and delocalized states can exist. The question of how
Anderson localization is modified in the presence of
interactions has become an area of intense activity follow-
ing the seminal work of Basko et al. [4]. These authors
argued that an interacting many-body system can undergo a
so called many-body localization (MBL) transition in the
presence of quenched disorder. This MBL transition
involves highly excited many-body quantum states and
can thus extend up to even infinite temperature in contrast
to a usual quantum phase transition [5], which involves
only the ground state. Traditional notions of statistical
mechanics do not apply to this transition and the localized
phase, including the eigenstate thermalization hypothesis
(ETH) [6–8] for the mechanism of thermalization in
isolated quantum systems [9,10]. It has thus been suggested
that there are emergent conservation laws for these local-
ized systems [11,12] like for integrable ones, which too do
not thermalize [13,14].
It is possible to have a localization-delocalization tran-

sition similar to the MBL transition for noninteracting one
dimensional models with quasiperiodic potentials. An
example of such a model is the Aubry-Andre model
[15] (AA model), which has the form

H ¼
X

i

hini − tðc†i ciþ1 þ c†iþ1ciÞ; ð1Þ

where c (c†) annihilates (creates) spinless fermions. t is
the hopping, and hi an on site potential with the quasi-
periodic form hi ¼ h cosð2παiþ ϕÞ, where α is an

irrational number and ϕ an offset. This model has a
localization-delocalization transition at h ¼ 2t, where all
states are (de)localized for hð<Þ > 2t. A numerical study of
this model with a nearest neighbor interaction of the form
V
P

ininiþ1 has shown that the single particle transition
changes into an MBL transition akin to the one in models
with on site disorder [16]. Furthermore, this model has
recently been emulated in experiments on cold atoms in the
noninteracting limit [17,18] and with interactions to
observe MBL [19].
Modifications to the AA model have been proposed to

yield models which possess single-particle mobility edges
[20–22]. It has been argued that in the presence of (even
weak) interactions, localized single particle states can
thermalize when coupled to a bath of even a single
delocalized state that is protected topologically or other-
wise [23]. However, a very recent work shows that in the
absence of any such protection, under certain conditions,
the localized states can instead thermalize the bath [24].
Models with single particle mobility edges are ideal to
study the latter scenario since the delocalized states have no
protection from localization.
In this work, we study whether MBL occurs in models

with single particle mobility edges upon switching on weak
to moderately strong interactions. Employing exact diag-
onalization of finite-sized systems, we calculate various
diagnostics to detect MBL such as the level spacing
distribution, time evolution of entanglement entropy, opti-
cal conductivity, and return probability. Our conclusion
is that MBL occurs in one of the models we study but not
the other. However, in the localized phase we observe,
the entanglement entropy increases appears to increase
linearly with time (like in an ergodic phase) but saturates
to a subthermal value characteristic of MBL. The growth
of entanglement entropy with time in a regular many-
body localized phase is logarithmic [25–27]. All other
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diagnostics appear to be consistent with regular MBL. We
examine the possible reasons for the different behaviors of
the two models and also provide possible reasons for the
observed linear growth of entanglement with time.
We have studied two different interacting one-

dimensional models of spinless fermions, which in the
noninteracting limit have single particle mobility edges.
The first, which we shall refer to as model I, is described by
the Hamiltonian

H ¼
X

i

hini − tðc†i ciþ1 þ c†iþ1ciÞ þ Vniniþ1; ð2Þ

where hi ¼ h cosð2παin þ ϕÞ with 0 < n < 1. For V ¼ 0
and n ¼ 1, this is just the AA model. However, for n < 1
and V ¼ 0, the model has a single-particle mobility edge
when h < 2t [20,21]. All single particle states with energy
between �j2t − hj are delocalized and all other states are
localized. For h > 2t, all single particle states are localized
as in the usual AA model.
The other model (which we refer to as model II) is also of

the form in Eq. (2) but with

hi ¼ h
1 − cosð2πiαþ ϕÞ
1þ β cosð2πiαþ ϕÞ ;

with β ∈ ð−1; 1Þ. When β ¼ 0 and V ¼ 0, this model also
reduces to the AA model. For V ¼ 0, there is a mobility
edge separating localized and extended states at an energy
E given by βE ¼ 2ðt − h=2Þ. This model also can be
experimentally realized [22].
We have studied both models using exact diagonaliza-

tion on finite-sized systems up to size L ¼ 16 (data in
plots shown for L ¼ 14) with open boundaries and have
averaged over the offset ϕ for better statistics. t ¼ 1 and
α ¼ ð ffiffiffi

5
p

− 1=2Þ in all our calculations. We now discuss
our results.
Energy level spacing statistics.—Energy level spacing

statistics is often used to characterize the MBL transition.
There is a crossover from a Wigner-Dyson to Poissonian
distribution upon going from the ergodic to the many-body
localized phase, which can be tracked by the ratio of
successive gaps, rn ¼ ðminðδn; δnþ1Þ=maxðδn; δnþ1ÞÞ [9],
where δn ¼ Enþ1 − En, the difference in energy between
the nth and nþ 1st energy eigenvalues. For a Poissonian
(Wigner-Dyson, specifically of the Gaussian Orthogonal
type) distribution, the mean value of r is 2 ln 2 − 1 ≈ 0.386
(≈0.5295). The distribution function PðrÞ → 0, as r → 0 in
the presence of level repulsion.
For model I, with V ¼ 0, h < 2, and n ¼ 1, all single

particle states are delocalized. As V is increased, the level
spacing distribution starts to follow the Wigner-Dyson
distribution. For, n < 1, with a mobility edge, level
statistics obey the Wigner-Dyson distribution, even though
there are localized states as shown in Fig. 1. Deep in the

localized phase (h ≫ 2), increasing V yields a Poissonian
distribution in both cases (n ¼ 1.0 and n < 1.0).
Unlike for model I, the position of the mobility edge in

the noninteracting limit of model II can be tuned by varying
the parameters β and h [22]. We choose, h ¼ 8 and change
β from −0.95 to 0 so the fraction of single particle localized
states increases progressively. In contrast to model I, here
the level spacing distribution appears to be Poissonian for
V ≠ 0 as can be seen in Fig. 1.
Entanglement entropy.—The entanglement entropy is

another diagnostic that can be used to distinguish between
the ergodic and many-body localized phases. We have
studied the time evolution of the entropy SðtÞ by sampling
the initial unentangled states at random over the entire
energy spectrum, which is equivalent to working at infinite
temperature [16]. SðtÞ has been argued to grow linearly in
the ergodic phase and logarithmically in the many-body
localized phase [25,28].
The system of length L is divided into two equal parts A

and B. Our calculation is of the order 2 Renyi entropy
S2ðtÞ ¼ −log2ðTrAρAðtÞ2Þ (which is computationally less
expensive than the von Neumann entropy) [29], where
ρAðtÞ is the reduced density matrix of A obtained from the
instantaneous state of the full system. It is known that in
the ergodic phase, S2ðtÞ ∼ t at long times and saturates to
the infinite temperature thermal value, while for the usual
many-body localized phase with weak interactions,
S2ðtÞ ∼ ζ logðtÞ, where ζ is the localization length of the
single particle eigenstates. It saturates to a value much
smaller than the thermal value, but which is still extensive
in system size. For our system, the infinite temperature
S2 ∼ ðL=2Þ − 1.2 for system size L [16].
For model I with a single-particle mobility edge, S2ðtÞ

increases linearly with time but then appears to saturate to
the thermal value as shown in Fig. 2. However, for model II,
S2 appears to grow linearly with time but saturates to a
value smaller than the thermal value. This can be seen from
Fig. 2, where the time evolution of S2 has been plotted for
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FIG. 1 (color online). The variation of the mean of the ratio
between adjacent gaps in the spectrum for L ¼ 14 at half filling
for model I and model II. The blue dotted line is for the
Poissonian distribution and the pink one is for the Wigner-Dyson
distribution.
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model II for V ¼ 0.2, h ¼ 8, and β ¼ −0.95 ,−0.75, and
−0.6, with progressively increasing fractions of single-
particle localized states. The saturation value depends on
the number of localized single particle states: as the fraction
of single-particle delocalized states increases, so does the
saturation value.
To confirm the linear growth SðtÞ, we have plotted δS ¼

S2ðt; VÞ − S2ðt; V ¼ 0Þ in Fig. 3 as a function of time. At
very early times S2ðt; VÞ and S2ðt; V ¼ 0Þ tend to coincide,
reflecting the formation of short range entanglement at the
cut between the subsystems. Then, S2ðt; V ¼ 0Þ saturates
but for the interacting system, S2 keeps growing with time
as shown in Fig. 3. At intermediate times, as long as there is
a mobility edge in the single particle spectrum, δS fits quite
well to a linear function of time. When all single particle
states are localized, the growth of δS as a function of t is
much slower than linear and possibly logarithmic. At long
times, δS saturates to a subthermal value in all cases (For a

calculation to even longer times, see the Supplemental
Material [30]).
We have also plotted the saturation value of S2 as a

function of system size L. As shown in the inset of Fig. 3,
Ssat2 ∼ L for the ergodic phase as well as for the model with
a mobility edge. This plot also shows that the Ssat2 curve for
the system with the single particle mobility edge system
does not intersect the curve for the ergodic system when
extrapolated to the thermodynamic limit. Thus, the satu-
ration of the entropy to a subthermal value is not a finite-
size effect.
Optical conductivity.—The optical conductivity σðωÞ is

another diagnostic that can be used to identify the ergodic
and many-body localized phases. In the case of a clean
metal, the dc conductivity σðω ¼ 0Þ ≠ 0 with a frequency-
dependent additive term that goes as ω1=2 at high temper-
ature [32]. In the presence of disorder, a subdiffusive phase
can exist even on the thermal side of the MBL transition
[33–36], for which σðωÞ ∼ ωa with 0 < a < 1. In the
many-body localized phase, σðωÞ ∼ ωa with 1 ≤ a < 2
[37] and a → 1 as the transition is approached. σðωÞ is
given by the Kubo formula,

TσðωÞ ¼ 1

ZL

X

mn

jhm
X

i

jijnij2δðω − Em þ EnÞ ð3Þ

as T → ∞, where,m,n are the many body eigenstates of the
system with energies Em and En. ji is the local current
density.
As shown in Fig. 4(a) for model I at very low values of ω,

σðωÞ ∼ ω3. This is from a combination of level repulsion
(one power of ω) and open boundary conditions (ω2) [37].
Subtracting this out, we obtain σ ∼ ω1=2 and σ ∼ ω3=4 for
model I with h ¼ 1.5, n ¼ 1.0 and h ¼ 1.5 and n ¼ 0.4,
respectively. For model II in the presence of a single-
particle mobility edge, after subtracting out the ω2 depend-
ence [38], σðωÞ ∼ ωa at low frequencies with 1 ≤ a < 2
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FIG. 2 (color online). Variation of the Renyi entropy for L ¼ 14
at half filling for the two models with different parameters.
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FIG. 4 (color online). (a) The variation of σðωÞ with ω for
the two models for L ¼ 14 at half filling for V ¼ 0.8. The
rescaled values of σ are plotted. 10σ, σ, and 0.1σ are plotted,
respectively, for model I (n ¼ 1, h ¼ 1.5 and n ¼ 0.4, h ¼ 1.5)
and model II (h ¼ 8, β ¼ −0.8). The dashed lines are the
best fit lines. (b) The variation of the return probability CðtÞ
as a function t for different models for L ¼ 14 at half filling. The
dashed lines are the best fit lines.
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like in the usual many-body localized phase. In Fig. 4(a),
for a particular choice of parameter β, σ ∼ ω3=2.
We have verified that we obtain the same exponent a

even with periodic boundary conditions, where the sub-
traction is of a different power of ω. Further, we find that
the exponent for model II increases as the fraction of
localized states for V ¼ 0 increases consistent with the
expectation that the system gets pushed deeper into the
many-body localized phase if it starts with more localized
states without interactions.
Return probability.—The return probability CðtÞ,

measures the probability of particles to return to their
initial positions during the evolution of the system and is
defined as

CjðtÞ ¼ 4

Z

X

nm

e−iωmntjhnjðnj − 1=2Þjmij2; ð4Þ

where Z is the Hilbert space dimension. We have calculated
CðtÞ ¼ ð1=LÞPjC

jðtÞ with Cðt ¼ 0Þ ¼ 1. In the ergodic
(diffusive) phase, CðtÞ ∼ t−1=2 and in the many-body
localized phase, it remains finite in the long time limit
[35]. The behavior of CðtÞ at long times is drastically
different for the two models as can be seen in Fig. 4(b). For
model I, with n ¼ 0.4 and h ¼ 1.5 at long times, CðtÞ ∼ t−b

with b ¼ 0.18, and for model II with β ¼ −0.95 and h ¼ 8,
CðtÞ does not decay with time. The result for model I is
consistent with the scaling relation aþ 2b ¼ 1, proposed
by Agarwal et al. [35]. We note however that we have not
been able to clearly observe CðtÞ ∼ t−1=2 in the thermal
phase probably due to limitations of system size.
Discussion.—We have demonstrated the effect of inter-

actions on models with mobility edges in the noninteracting
limit. Our numerical results employing a number of differ-
ent diagnostics show that an MBL phase can occur in such
a situation. We find that model II displays MBL while
model I does not. One possible reason for this is finite size
effects. To examine this, we have calculated the inverse
participation ratio (IPR) for all the states of an L ¼ 14
system with V ¼ 0.
The IPR of a normalized eigenstate ψ is defined

IPRΨ ¼ P
jjcjj4, where cj is the amplitude of ψ at site

j. IPR ∼ 1 for a localized state and is much smaller (typical
∼1=L) for a delocalized one. The IPR values for the two
models are shown in Fig. 5. It can be seen that while there
are localized states (with IPR of order 1) along with
delocalized ones for model II, the states of model I appear
to be delocalized for our system size. This behavior
presumably persists even with interactions (which gener-
ally tend to cause delocalization). As a result, none of the
diagnostics for this model show any evidence of a many-
body localization, to observe which probably requires
larger system sizes that are not easily accessible with exact
diagonalization. Another possibility is that even in the
thermodynamic limit the localized states of model I are

only “weakly” localized compared to those of model II and
thus fail to localize the bath. Another possibility is that the
delocalized states of model I are “inherently” more robust
compared to the localized ones whereas for model II, it is
the other way around. A calculation of the IPR for large
system sizes seems to suggest that this is true [30].
Additional calculations of the matrix elements for flip-flop
processes and the localization length exponent ν [30] seem
to indicate that model II may not satisfy the conditions for
delocalization even when coupled to a protected bath [23].
Thus, an introduction of interactions would tend to cause
MBL in model II and thermalization in model I even in the
thermodynamic limit. Additional studies are required to
fully understand the differences between the two models.
For model II, the entanglement entropy appears to grow

linearly with time (instead of logarithmically) before
saturating to a subthermal value. A possible explanation
is the simultaneous but independent contributions of the
delocalized and localized states which individually would
produce linear and logarithmic growth, respectively. For
sufficiently long times, the linear growth would dominate,
which is what we observe. A mechanism has been proposed
recently invoking the idea of rare thermal regions in a
many-body localized phase [37] mainly to explain the
behavior of σðωÞ near the MBL transition. The specific
systems studied has spatially separated ergodic and thermal
regions. A calculation of SðtÞ performed by us for a similar
system yields faster than logarithmic (algebraic) growth of
S2 with time, similar to what we observe for model II. Thus,
the delocalized states in our models could be performing a
role analogous to that of rare thermal regions and producing
a linear growth of entanglement. Note however, that the
quasiperiodic potential in our models is correlated at
different sites and so no true rare regions in the sense of
[37] can actually occur. The analogy is therefore not a deep
one. Algebraic growth of entanglement with time in a
many-body localized phase has also been observed in the
presence of long-range interactions [39]. Another possibil-
ity is that the apparent linear growth is a finite-size effect in
model II and will eventually become logarithmic for
sufficiently large system sizes. The slow growth of the
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localization length near the mobility edge for model II as
characterized by the exponent ν [30] might be a sign that
finite-size effects are important.
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Note added.—A related study of many-body localization in
model II appeared at the same time as ours [40] .
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