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Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer
rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open
problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of
a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the
polymer conformations drastically. Polymers of length L wander in the transverse direction only by a
distance of order ðlnLÞζ with ζ ≃ 1.5. This is strongly suppressed in comparison with the Brownian L1=2

scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions
of standard heuristic approaches—in particular the L1=4 of a mean-field-like “array of obstacles” model—
so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints,
and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse
direction. To cast light on the suppression of the strands’wandering, we analyze the topological complexity
of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a
power law. We comment on insights the results give for 3D melts, directed and nondirected.
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The fact that polymer chains cannot pass through each
other is the crucial factor in their dynamics, underlying for
example the reptation picture [1–3], and in various sit-
uations also determines their equilibrium state. Two salient
examples are a single ring polymer and a melt of rings that
do not knot or link. In such cases the no-crossing condition
sets topological constraints that are inherently nonlocal.
The statistical mechanics of such systems is a tremendous
theoretical challenge, for which no systematic theoretical
tools are presently available. Heuristic approaches [4–10]
and ever-growing numerical simulations [11–17] have
provided substantial insight, but even basic issues—such
as the size of a single ring polymer in a melt or the degree to
which different rings mix—are not resolved. Ring polymer
melts have received considerable attention as models of
chromosome arrangement in the nucleus [18], and experi-
ments on ring melts have revealed unique rheological
properties [19]. Additionally, dense systems of open chains
may be subject to effective topological constraints on
intermediate time scales, yielding very slow relaxation
and long-lived “pseudoequilibrium” states with less entan-
glement than at equilibrium [20,21].
The aim of this Letter is to study the simplest possible

(but genuinely many-body) model for a topologically
constrained melt. Physically, this model describes directed
polymers in quasi-2D, i.e., in a slab geometry, but with the
positions of the polymers projected onto the plane to give
a 2D lattice model. The remnants of three dimensionality
are the fact that the polymers can cross and the crucial
distinction between over and undercrossings (Fig. 1). The

endpoints of the polymers are held fixed, and the entire melt
is constrained to be topologically trivial: that is, continuously
deformable to the state in which all polymers are straight
lines. The melt is endowed with Monte Carlo dynamics that
respect this constraint (i.e., respect the fact that the polymers
cannot pass through each other). Mathematically, the poly-
mers form a trivial “braid.” The statistical properties of
random braids have been studied extensively in order to
shed light on polymer topology [22–26], but the dynamical
and conformational properties of a topologically constrained
melt have not been investigated.
Our model is extremely tractable computationally, so we

are able to obtain precise results for its universal properties:
these turn out to be surprising in the light of current
theoretical ideas. The model is also simple enough to allow
hope of analytical progress.
A key feature of the model is that it allows comparison

with the predictions of standard theoretical approaches,
shedding light on the validity of ideas that are more general

FIG. 1 (color online). (a) Topologically trivial configuration in
a small system. (b) Monte Carlo move types. There are six
variants of the move on the lower right, and two of that on the
upper right.
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than the directed case: for example the idea of modeling
topological effects in a melt using toy models of a single
polymer in an array of obstacles [5,6,10], or the use of
Flory-like arguments [7–9]. These approaches are wide-
spread but hard to justify a priori. It is important to find
ways to confront them with precise results from a genuinely
interacting many-polymer model.
The present model may also capture the universal

behavior of some realistic situations. The most striking
features of our results are expected to extend to systems of
directed polymers in 3D, so the results for dynamical
behavior may be relevant to relaxation and equilibration in
polymer brushes [27,28].
In both the present model and 3D ring melts, topological

constraints reduce the extension of individual polymers:
entropy dictates that polymers “hide” from each other,
as more extended configurations are more likely to be
entangled. We will soon see that for directed polymers this
effect is almost as strong as it could possibly be.
Model.—Take a number Lx of strands, each of height Ly

and directed in the y direction, see Fig. 1(a). At integer y
values the polymers lie at integer x values, and all lattice
points are occupied. Between y and yþ 1, a given polymer
may be vertical, or two neighbors may cross. We take
periodic boundary conditions in the x direction, and fix the
positions of the endpoints at y ¼ 0 and y ¼ Ly so the two
ends of a given polymer have the same x coordinate. Finally
we enforce topological triviality: the allowed configura-
tions are those which can be deformed to the configuration
with straight vertical polymers. Mathematically, each
configuration C defines an element gðCÞ of the braid group
[29], and allowed configurations are those in which this
is the trivial element “1.” The partition function Z is the
equally weighted sum over allowed configurations (δ is the
Kronecker delta):

Z ¼
X

configsC

δgðCÞ;1: ð1Þ

In practice, to fully define the model we need a
Monte Carlo scheme which samples only the topologically
trivial configurations. For this we use the moves shown
in Fig. 1(b), which have a simple relationship with the
defining relations of the braid group [30], and which form a
complete set of moves. Intuitively, any local rearrangement
can be decomposed into: creation or annihilation of pairs of
crossings; motion of crossings; and motion of one strand
over or under a crossing between two others. These are
precisely the moves in Fig. 1(b). Figure 2 gives an idea of
what a subregion of the melt looks like. Note that the model
has a fixed monomer density: this eliminates finite-size
effects due to fluctuations of the density mode, which is
irrelevant to long-distance behavior.
We work in the limit where Lx, the number of strands,

is much greater than the typical wandering of the strands.

In fact we enforce a stricter criterion: we ensure Lx is
large enough that the results are essentially those of the
Lx → ∞ limit. We find that this can be achieved using
modest Lx, which is unsurprising given that the wandering
is much smaller than Ly. Below we take Ly ranging up to
Ly ¼ 1200, and Lx ranging up to Lx ¼ 100 (larger for
some Ly). The Supplemental Material [31] gives further
details of simulations, including basic checks of equilibra-
tion and convergence in Lx.
Results.—The wandering DiðyÞ is defined as the trans-

verse displacement of the ith strand at height y. We denote
the root mean square (rms) transverse displacement by
DðyÞ. In the absence of the topological constraint in
Eq. (1), each strand essentially performs a random walk
constrained to return to xy¼0 when y ¼ Ly; thus it is clear
(and we have checked [31]) that in the unconstrained case
DðLy=2Þ ∼

ffiffiffiffiffi
Ly

p
.

As noted above, the topological constraint will reduce
the polymers’ wandering. Figure 3 quantifies this using the
rms wandering at the midpoint of the strands, DðLy=2Þ,
plotted against Ly. The fit is

FIG. 2 (color online). A subregion of a topologically trivial melt
(taken from a system of size Lx ¼ 512, Ly ¼ 128).

FIG. 3 (color online). Main panel: Transverse wanderingD of a
strand at its midpoint y ¼ Ly=2, as a function of the length Ly of
the strands (note lin-log scale). Red line: Fit to the logarithmic
form in Eq. (2). Inset: Effective exponent νeff ¼ d lnD=d lnLy,
see text, with fit derived from Eq. (2).
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D ¼ A

�
ln
Ly

l0

�
ζ

; ζ ¼ 1.49ð3Þ; ð2Þ

with A ¼ 0.26ð2Þ, l0 ¼ 0.91ð9Þ.
This logarithmic form is unexpected. However, a more

conventional power law fit D ∝ Lν
y leads to much worse

results, or to an exponent equal to zero within error bars if
subleading corrections are included [34]. The inset to Fig. 3
shows an effective finite-size wandering exponent defined
by νeff ¼ d lnD=d lnLy. This drifts downwards, as
expected for the logarithmic form, according to which
νeff → 0 as Ly → ∞. The “array-of-obstacles” prediction
discussed below, ν ¼ 1=4, is clearly ruled out. See Ref. [31]
for further discussion of fits.
Further evidence for the logarithmic behavior comes

from the wandering DðyÞ in the distinct regime y ≪ Ly.
Since no scaling theory exists for this problem, it is not
guaranteed a priori that the behavior for y ≪ Ly and
y ∼ Ly=2 will be similar, but this turns out to be the case.
See Fig. 4, where the data fit well to DðyÞ ¼ A0ðln y=l00Þζ0
with ζ0 ¼ 1.54ð15Þ. Note the striking agreement between
the independently determined exponents ζ and ζ0. The
lower inset to Fig. 4 shows the same data on a log-log scale:
it is clear from the curvature that a power law would fit only
over a very narrow range of scales. The result for DðyÞ
highlights the fact that the properties of a finite-sized
subsystem (of height y) are strongly affected by the global
topological constraint even in the limit Ly → ∞.
In addition to the rms displacement of a strand, we may

consider the full probability distribution. Figure 4 (upper
inset) shows this for the displacement at y ¼ Ly=2. The

data collapses beautifully after rescaling by the rms value.
The distribution is not quite Gaussian [31].
Correlations.—Correlations between the displacements

of different strands decay exponentially when their sepa-
ration is much larger than the wandering. Specifically, let
CDðxÞ ¼ hDiDiþxi, where Di is the transverse displace-
ment of the ith strand at its midpoint. At large x,
CDðxÞ ∼ e−x=ξ, with a correlation length ξðLyÞ that grows
in a roughly similar manner to D [31]. The two-point
function CXðxÞ for the density of crossings (for plaquettes
at y ¼ Ly=2 separated by a distance x) decays exponen-
tially with period-2 oscillations and a correlation length of
less than two lattice spacings.
Dynamics and logarithmic subdiffusion.—The time scale

τ for relaxation of the melt is extracted from the
Monte Carlo time series. It is independent of Lx for large
Lx, but depends nontrivially on the length Ly of the strands:

τ ∼ Lz
y; z ¼ 2.60ð6Þ: ð3Þ

This exponent describes the equilibration of the entire
system within the topologically constrained space of states.
The transverse motion of a tagged monomer in an infinite
system is more interesting. By Eq. (2), we expect that
motion of the monomer by a distance x involves rearrange-
ments of segments of height y ∼ expðx=AÞ1=ζ, and a time t
which is a power law in y. This implies that the tagged
monomer subdiffuses logarithmically slowly:

hx2i ∼ ðln tÞ2ζ: ð4Þ

Similarly, the decorrelation time of a subregion of the melt
of size x × y is exponentially large in x.
Equation (4) describes a monomer inside the topologi-

cally trivial melt. It is interesting to ask about the dynamics
of a monomer for other choices of the initial state; for
example an equilibrated state of the topologically uncon-
strained problem. A naive guess might be that the increased
local entanglement in such a state will slow the motion even
further, but this needs investigation. These issues are related
to relaxation in polymer brushes [35], in which the
polymers are tethered at one end and are directed (on large
scales) for high surface fraction [27,28].
Topological complexity.—The present model allows for

a clean definition of the topological complexity of a
subregion (the full system is of course topologically trivial).
Examining this complexity illuminates the drastic suppres-
sion of the wandering. We take the subregion to be the
bottom half of the braid, y < Ly=2. Fixing the strands’
endpoints at y ¼ 0 and y ¼ Ly=2 gives the half-braid a
well-defined topology which cannot be changed by allowed
moves in the interior. Allowed moves can, however, reduce
the total number of crossings. Let Nmin be the minimal
value to which we can reduce this number, and define the
complexity per strand as

FIG. 4 (color online). Main panel: rms wandering DðyÞ versus
position y along the strand, for various values of the strand
length Ly. Blue line: Fit to D ¼ A0ðln y=l00Þζ0 for 10 ≤ y ≤ 100,
giving ζ0 ¼ 1.54ð15Þ, A0 ¼ 0.204ð10Þ, l00 ¼ 0.146ð10Þ. Lower
inset: Same data on log-log plot. Upper inset: Probability
distribution for wandering of a strand, PðDiÞ, rescaled by
standard deviation D.
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C ¼ 2Nmin=Lx: ð5Þ

C is the average number of crossings encountered (i.e.,
steps to the right or left taken) by a single strand in the
reduced configuration. C is finite as Lx → ∞. Note that
reducing the half-braid does not change DiðLy=2Þ: strands
in the reduced half-braid take many fewer steps, but wander
by the same total distance.
We compute C by simulated annealing. Starting with an

equilibrated braid, we extract the lower half and subject it to
a modified Monte Carlo dynamics with an energy penalty
for crossings. The temperature is gradually lowered until
the system finds its “ground state.” We do not encounter
problems finding the ground state [31], perhaps because C
is modest.
The main panel of Fig. 5 shows C plotted against Ly,

and the inset shows the rms wandering DðLy=2Þ plotted
against C. Strikingly, the wandering has a clean power law
dependence on the topological complexity:

D ∝ Cα; α ¼ 0.618ð2Þ: ð6Þ

This implies, for consistency with Eq. (2),

C ∝
�
ln
Ly

l0

�
η

; η ¼ ζ

α
≃ 2.41ð6Þ: ð7Þ

This is indeed compatible with the results in Fig. 5. For
comparison, a braid configuration of height Ly=2 chosen
uniformly from the set of all such braids has a typical
complexity of order Ly [23,24]. For a fixed finite number of
strands, a sub-braid of sufficiently large height y is believed
to have a complexity of order

ffiffiffi
y

p
[16,22,23], but this is a

different (“quasi-1D”) limit [31].
The suppression of wandering may therefore be viewed

as a consequence of the drastic suppression of complexity.

Interestingly, the geometry of the strands in the reduced
half-braid is more conventional than in the unreduced
half-braid: the wandering D of a strand has a power law
dependence on the average number of steps, C. The
exponent α in Eq. (6) is greater than 1=2, indicating
positive correlations between steps in the reduced half-
braid. By contrast, the number of steps per strand in the
unreduced half-braid is much larger, OðLyÞ, and there are
strong negative correlations between steps.
Comparison with standard ideas.—Many approaches to

topologically constrained melts rely either on simplifying
the problem to a single strand in an array of obstacles which
represent the other polymers [4–6,10,36], or on Flory-like
free energy arguments [7–9]. These ideas have for example
been used to argue that rings in a 3D melt fold up into
compact treelike structures [9]. However both approaches
are uncontrolled approximations which must be tested
against data. For 3D ring melts this is challenging because
of large finite-size effects [14,36].
Here, we can make a quantitative comparison with the

natural array of obstacles model for the directed case,
which describes a single fluctuating strand in an array of
straight vertical strands [31]. This predicts D ∼ Lν

y with
ν ¼ 1=4, and C ∼ L1=2

y [5], contrary to our results. The
wandering distribution also differs [31]. The exponent z on
the other hand is roughly compatible with the z ¼ 5=2 of
the array of obstacles model [10] (though, by the reasoning
preceding Eq. (4), the transverse diffusion in the topologi-
cally constrained ensemble will be much faster for the array
of obstacles). Our results show that, for directed polymers,
the behavior of the true melt is very different from the array
of obstacles model.
Flory-like estimates are sensitive to the assumed form of

the entropic cost of not being entangled [7–9], which is
hard to control. Here one can easily show that two-strand
interactions alone are not enough to explain ν ¼ 0. See the
Supplemental Material [31] for further discussion. The
approach does, however, support the expectation that
wandering is at least as strongly suppressed in 2þ 1D
as in 1þ 1D.
Throwing out three-strand moves.—Though much sim-

pler than a melt of 3D rings, the present model is still a
formidable challenge analytically. One may also consider a
reduced model based on the “locally free group” [23,24],
a simplification of the braid group. This means imposing
the stronger constraint that the melt be deformable to the
straight-line state without using the three-strand moves of
Fig. 1. This is a drastic simplification, and no longer
faithful to the topology of directed melts. Nevertheless
preliminary simulations suggest that behavior for D
remains qualitatively similar, with a reduced ζ ∼ 1 [31].
Future directions.—We believe that the crucial features

of the present model, including the fact that the wandering
is logarithmic (though not necessarily the value of ζ), will
carry over to the 3D directed case. This is because the

FIG. 5 (color online). Main panel: Complexity (per strand) for
the half-braid as a function of Ly, fitted to the form in Eq. (7) with
η ¼ 2.6ð2Þ. Inset: Wandering DðLy=2Þ plotted vs the complexity
CðLy=2Þ and fitted to a power law, Eq. (6).
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number of other strands encountered by a given strand
grows faster with D in 3D than in 2D, indicating a stronger
entropic penalty for wandering. This conjecture must be
examined numerically. Another natural next step is to
investigate the dynamics of the present model when the
endpoints of the chains are free to move, so that the
topology of the melt can slowly relax. It would be
interesting to know whether the transverse motion of the
monomers remains logarithmically slow even in the final
equilibrated state. If we start from an unentangled con-
figuration, even the static properties may remain similar to
those discussed here for a very long time.
We have seen that for a topologically constrained ensem-

ble of directed polymers, the exponent governing the chains’
extension takes its minimal possible value, ν ¼ 0, with
logarithmic corrections. One might wonder whether in a 3D
ring melt the radius of gyration is also governed by
logarithmic corrections to the minimal exponent value
(ν ¼ 1=3). Conceivably, such logarithms might partially
explain the slow saturation observed for ν in this case.
A fundamental question is whether there exists a real-

space renormalization group treatment for topologically
constrained polymers [31]. The present model may be
simple enough to offer hope of this.
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