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We study a twisted Hubbard tube modeling the ½CrAs�∞ structure of quasi-one-dimensional super-
conductors A2Cr3As3 (A ¼ K, Rb, Cs). The molecular-orbital bands emerging from the quasi-degenerate
atomic orbitals are exactly solved. An effective Hamiltonian is derived for a region where three partially
filled bands intersect the Fermi energy. The deduced local interactions among these active bands show a
significant reduction compared to the original atomic interactions. The resulting three-channel Luttinger
liquid shows various interaction-induced instabilities including two kinds of spin-triplet superconducting
instabilities due to gapless spin excitations, with one of them being superseded by the spin-density-wave
phase in the intermediate Hund’s coupling regime. The implications of these results for the alkali chromium
arsenides are discussed.
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Introduction.—Recently, the alkali chromium arsenides
A2Cr3As3 (A ¼ K, Rb, Cs) have been found as a new
family of inorganic quasi-one-dimensional (Q1D) super-
conductors with strong electron correlations [1–3]. The
basic building block of these compounds is the ½CrAs�6
cluster consisting of two conjugated triangular complexes
½CrAs�3 as shown schematically in Fig. 1(a). They are
aligned along the c axis forming a ½CrAs�∞ tube, and
intercalated by Aþ cations forming a hexagonal lattice. The
density functional theory (DFT) calculations [4,5] predict a
three-dimensional (3D) Fermi surface (FS) sheet (γ band)
and two Q1D FS sheets (α and β bands), essentially due
to the Cr 3d electrons. The NMR experiment [6] has
revealed a power law behavior of the spin-lattice relaxation
rate, manifesting the Luttinger liquid feature above Tc.
The penetration depth measurement [7] has evidenced a
line nodal feature in the pairing state below Tc.
Because of the existing 3D γ band, whether the super-

conductivity solely originates from the Q1D structure of
A2Cr3As3 is uncertain. In fact the nearly isotropic 3D bulk
CrAs compound shows superconductivity with Tc ∼ 2.2 K
under pressure of ∼0.7 GPa [8,9]. Interestingly, Zhou et al.
pointed out that an f-wave pairing state could arise from
the 3D band with a node line while a fully gapped p-wave
pairing state could dominate at the Q1D band [10]. Such
triplet superconductivity, with some variations in spatial
symmetry [11], could be driven by ferromagnetic fluctua-
tions within the sublattice of Cr atoms [4,11].
In order to understand the formation of the low energy

bands, it is particularly important to understand the
electronic property of a single fundamental ½CrAs�∞ tube.
In this Letter, we model this system by a twisted Hubbard

lattice composed of triangular complexes coupled along
the c axis with the glide reflection symmetry as shown in
Fig. 1(b) [12]. In each unit cell there are six Cr atoms, each
with five 3d atomic orbitals (AOs). The influence of the
As 4p orbitals can be effectively accounted for by the
indirect hopping of Cr-3d electrons. So the model involves
thirty energy bands in total. In the realistic case, fortunately,
only three partially filled bands are active in the low energy
regime. We will explicitly show how these bands come
from the molecular orbitals (MOs) of ½CrAs�6 [4,10]. Our
purpose is then to understand their cooperative low temper-
ature physics within the Luttinger liquid approach. The
proposed effective model is of interest in its own right as
we shall explore in the following.

(b)(a)

FIG. 1 (color online). (a) A CrAs cluster in the ab plane. The
solid (dotted) circles connected by the solid (dotted) lines
represent the Cr atoms in the first (second) triangle in a unit
cell. The isolated outer solid (dotted) circles represent the As
atoms in the corresponding planes. (b) A Q1D CrAs tube. The
blue (green) filled circles represent the Cr atoms in each triangles.
The As atoms are not shown.
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Model hamiltonian.—The Hubbard model for a single
½CrAs�∞ tube is expressed as H ¼ H0 þHint, where, H0

represents the noninteracting part consisting of the tight-
binding kinetic energy and the crystalline electric field
(CEF) splitting,

H0 ¼ −
X

rr0mm0σ

tðr;r
0Þ

mm0 d
†ðmÞ
rσ dðm

0Þ
r0σ þ

X
rmσ

Ermn
ðmÞ
rσ : ð1Þ

Here, dðmÞ
rσ denotes the annihilation operator of Cr 3d

electrons at the site r with angular momentum m ¼ 0,

�1, �2, spin σ ¼ ↑, ↓:nðmÞ
rσ and SðmÞ

r are the corresponding
density and spin operators. The two twisted Cr triangles

could have different Erm ¼ Eð1Þ
m , Eð2Þ

m , accountable for the
possible occupation difference [5], while
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X
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represents the local interactions including the intraorbital
Coulomb interaction U, the interorbital Coulomb interac-
tion U0, the Hund’s coupling JH, and the pair-hopping Jp,
respectively.
There are four kinds of adjacent intraorbital hoppings

tðiÞmm ≡ tðiÞm (i ¼ 1–4), corresponding to the nearest-neighbor
(NN) sites in the first and second triangles, and those between
the intracell and intercell triangles, respectively, as illustrated
in Fig. 1(b). Because of the metallic bonding among
Cr atoms, the direct orbital mixings are relatively small,
and the indirect hybridization is mainly bridged by the As
4p orbitals. So it is legitimate to consider a simpler situation

for the adjacent interorbital hopping: tðiÞmm0 ¼ ηtðiÞm δjmj;jm0j for
m ≠ m0, with jηj < 1. In this situation, the atomic orbitals
are quasidegenerate as the nonvanishing mix terms are
isotropic in space [13]. Finally, we include the next NN

intraorbital hopping tð5Þm along the tube direction.
Molecular-orbital bands.—Denoting each site by

r ¼ ðn; a; ξÞ, with a ¼ 1, 2, 3 being the location in
the first (ξ ¼ 1) or second (ξ ¼ 2) triangles in the nth unit

cell, it is convenient to introduce a base dðmÞ
n ¼

ðdðmÞ
ðn;1;1Þ; d

ðmÞ
ðn;1;2Þ; d

ðmÞ
ðn;2;1Þ; d

ðmÞ
ðn;2;2Þ; d

ðmÞ
ðn;3;1Þ; d

ðmÞ
ðn;3;2ÞÞ

T for the

atomic m-orbital in the nth unit cell (the spin index σ is
implied). For m ¼ 0, this base accommodates a represen-
tation for the C3 rotational symmetry, leading to six MOs
corresponding to E, E0, A, and A0 states, respectively [14].
Form ¼ �1 or�2, we need to introduce a set of new bases
~dð�jmjÞ
n ¼ ð1= ffiffiffi

2
p Þ½dðmÞ

n � dð−mÞ
n �. Thus for a single ½CrAs�6

cluster, we have thirty MOs defined by CðτÞ
n ¼ðR̂⊗ Q̂0Þ ~dðτÞn

for τ ¼ 0 (denoting ~dð0Þn ≡ dð0Þn ), �1 and �2, respectively,
with (ω ¼ eiφ, φ ¼ 2π=3)

R̂ ¼ 1ffiffiffi
3

p

0
B@

1 1 1

1 ω ω−1

1 ω−1 ω

1
CA; Q̂0 ¼

1ffiffiffi
2

p
�
1 −1
1 1

�
: ð3Þ

Note that the eigenstates of R̂ with eigenvalues λ1 ¼ 2 and
λ2 ¼ λ3 ¼ −1 correspond to the representations A and E,
respectively.
When the triangles are coupled along the c axis via the

intercell hopping tð4Þmm0 , we can extend Q̂0 to the momentum

k-resolved matrix Q̂ðτÞ
a ðkÞ so that the Bloch form CðτÞ

k ¼
ðcðτÞðk;1;1Þ; c

ðτÞ
ðk;1;2Þ; c

ðτÞ
ðk;2;1Þ; c

ðτÞ
ðk;2;2Þ; c

ðτÞ
ðk;3;1Þ; c

ðτÞ
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T is still a

natural base diagonalizing H0, leading to thirty MO bands

labeled by the eigenenergies EðτÞ
ða;ξÞðkÞ. Here the subscript

ξ ¼ 1, 2 corresponds to the antibonding or bonding bands,
respectively, due to the twisted structure. The explicit

expressions of Q̂ðτÞ
a ðkÞ and EðτÞ

ða;ξÞðkÞ, which also depend

on the orbitals τð¼ 0;�1;�2Þ and C3 eigenvalues
λaða ¼ 1; 2; 3Þ, are presented in the Supplemental
Material (SM) [15]. A set of subscripts ða; ξÞ determines
the symmetry property of the corresponding MO bands.
We fitted the DFT band structure along the tube direction

using the obtained MO bands within τ ¼ 0, �2, while
the bands with τ ¼ �1 are fairly away from the Fermi
energy as revealed in the DFT calculations [4,5]. The three
partially filled DFT bands, i.e., the 3D γ band characterized
mainly by the dz2 orbital (m ¼ 0), the Q1D α and β bands
characterized mainly by the dxy and dx2−y2 orbitals
(jmj ¼ 2), are all holelike near the Γ point (k ¼ 0) and
electronlike near the A point(k ¼ π). Therefore, the γ band
corresponds to the singlet MO band labeled by (τ ¼ 0,
a ¼ 1, ξ ¼ 1). The α and β bands, which are degenerate
along the whole Γ → A direction, correspond to the doublet
MO bands labeled by (τ ¼ −2, a ¼ 2, ξ ¼ 2) and (τ ¼ −2,
a ¼ 3, ξ ¼ 2), respectively. The best fitting using Eð0Þ

ð1;1Þ,

Eð−2Þ
ð2;2Þ ¼ Eð−2Þ

ð3;2Þ is shown in Fig. 2 [15]. Here, the tight-
binding parameters are not uniquely determined because
the number of these parameters exceeds eight necessary
coefficients in the fitting. On the other hand, the precise
values of the fitting parameters are not important in the
present study. As we shall find later, only the symmetry
property of the MO bands and local interactions between
them play a crucial role in the Luttinger liquid approach.
For simplicity, from now on, we shall use the band

subscript νð¼ 1; 2; 3Þ to account for the three MO bands
intersecting the Fermi energy. These active MO bands are
associated with phases φν ¼ 0, 2π=3, −2π=3, or chiralities
ϑν ¼ 0, 1, and −1, respectively. In the full 1D Brillouin
zone, there are three pairs of Fermi points (kFν

, −kFν
),

satisfying 0 < kF1
< kF2

¼ kF3
< π, as schematically
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shown in the inset of Fig. 2. By integrating out all inactive
bands, we obtain the effective theory describing the low
energy property of the active bands:

Heff ¼
X
kνiσ

EνðkÞn̂kνσ þ
X
n

HðnÞ
int : ð4Þ

Where, n̂kνσ ¼ c†kνσckνσ is the density operator of electrons

in the νth MO band, HðnÞ
int the residual short-range inter-

actions in the MOs in the nth unit cell, given by

HðnÞ
int ¼

X
ν

~Uνn̂ν↑ðnÞn̂ν↓ðnÞþ
X

ν≠ν0σσ0
~Uνν0 n̂νσðnÞn̂ν0σ0 ðnÞ

−
X
ν≠ν0

~Jνν0 ŜνðnÞ · Ŝν0 ðnÞ

þ ~J123½c†1↑ðnÞc†1↓ðnÞc2↓ðnÞc3↑ðnÞþ ð2↔3ÞþH:c:�:
ð5Þ

In this expression, the electron annihilation operator in the
nth unit cell is defined by the Fourier transformation
cνσðnÞ ¼ ð1= ffiffiffiffiffiffi

2π
p ÞPke

iknc0ckνσ (with c0 the lattice spacing
taken as unit). Only those terms preserving the neutrality
condition

P
νi
ϑνi ¼ 0 could survive. The matrix Q̂0 is used

in deducing Eq. (5) as the short-range interactions aremainly
due to the slowly varying part, leading to ~U1 ¼ U=6,
~U2 ¼ ~U3 ¼ ðU þ U0 þ JH þ JpÞ=12; ~U12¼ ~U13¼U0=12−
JH=24; ~U23¼ðUþU0þJHþJpÞ=48; ~J12 ¼ ~J13 ¼ JH=6;
~J23 ¼ ðU þ U0 þ JH þ JpÞ=12; and ~J123 ¼ Jp=6. The
influence of inactive bands is mainly attributed to the
renormalized tight-binding parameters.
The luttinger liquid in the weak-coupling regime.—We

now take the continuous limit, linearize the active bands
near the Fermi points, and decompose the electron operator
into right and left moving components like cνσðzÞ≈
e−ikFνz−iφνLνσðzÞ þ eþikFν zþiφνRνσðzÞ. Here, z ¼ nc0 is the
spatial coordinate along the tube direction, Rνσ and Lνσ

represent the right and left moving fermions describing the
low energy excitations near the Fermi points (kFν

, −kFν
)

with linear dispersion �vFν
k. The long-wavelength,

low-energy effective Hamiltonian (density) is given by
Heff ¼ H0 þHint, where H0 ¼

P
ν;σðivFν

Þ½R†
νσ∂zRνσ −

L†
νσ∂zLνσ� is the kinetic part, and Hint includes various

residual interactions which are usually expressed in terms
of the g-ology [16,17]. We shall assume the Fermi
velocities vFν

to be the same as this does not influence
the nature of superconductivity we are concerned with. The
corresponding one-loop renormalization group (RG) equa-
tions resemble those for three-leg Hubbard ladders [18,19]
or a variant of carbon nanotubes [20–22]. The instabilities
of these RG equations are classified routinely: (i) the
intraband instabilities as those developed in the single-
channel Luttinger liquid [23], and (ii) the interband
instabilities as those developed in the two-channel band
Luttinger liquid. Note that the three-band interaction in
Eq. (5) does not lead to the peculiar three-band instability
suggested in Ref. [22] as shown in the SM [15,24]. All
these suggest the validity of the conventional bosonization
approach based on spin-charge separation, where various
ordering instabilities can be determined by Luttinger
parameters. The new ingredients here are the peculiar
symmetry surviving in the active MO bands and their
dependence on local electron interactions.
The right- and left-moving fields are then expressed in

terms of the charge fields (ϕν;c, θν;c) and the spin fields
(ϕν;s, θν;s) (for each ν ¼ 1, 2, 3) by

Rν;σðzÞ ¼
FR;νσffiffiffiffiffiffiffiffiffiffi
2πc0

p ei
ffiffiffiffiffiffi
π=2

p
ðθc;νþσθs;ν−ϕc;ν−σϕs;νÞ;

Lν;σðzÞ ¼
FL;νσffiffiffiffiffiffiffiffiffiffi
2πc0

p ei
ffiffiffiffiffiffi
π=2

p
ðθc;νþσθs;νþϕc;νþσϕs;νÞ: ð6Þ

The Klein factors FR;νσ and FL;νσ ensure the fermionic
statistics between the right and left moving fermions.
Next, in order to diagonalize the kinetic part, we need to
introduce a set of new bases

~ϕγ;i ¼ ηγ;iðqγ;iϕγ;1 þ ϕγ;2 þ ϕγ;3Þ;
~ϕγ;3 ¼

1ffiffiffi
2

p ð−ϕγ;2 þ ϕγ;3Þ; ð7Þ

where γ ¼ s, c, qγ;i ¼ −½bγ þ ð−1Þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a2γ þ b2γ

q
=2aγ� for

i ¼ 1, 2, ac ¼ ð2 ~U12=πÞ, bc ¼ ð2 ~U23=πÞ, as ¼ −ð ~J12=2πÞ,
bs ¼ −ð~J23=2πÞ, ηγ;i are the normalization constants.

Similar relationships apply to the fields θγ;i and ~θγ;i for
i ¼ 1, 2, 3. Hence, we arrive at the following three-channel
Tomonaga-Luttinger liquid Hamiltonian:

~H0 ¼
Z

dz
X

i¼1;2;3;γ¼s;c

�
vF
2
ð∇~θγ;iÞ2 þ λγ;ið∇ ~ϕγ;iÞ2

�
ð8Þ

FIG. 2 (color online). Fitting the band structure: The upper
band is twofold degenerate. The lower inset is the schematic
picture for the three partially filled bands with three pairs of
Fermi points.

PRL 115, 227001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 NOVEMBER 2015

227001-3



where, λγ;i ¼ tγ þ 1
2
½bγ − ð−1Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a2γ þ b2γ

q
� for i ¼ 1, 2,

and λγ;3 ¼ tγ − bγ, tc ¼ ðvF=2Þ þ ð ~U1=2πÞ, ts ¼ ðvF=2Þ−
ð ~U1=2πÞ. Therefore, the Luttinger parameters are obtained
explicitly by

Kc;i ¼
�
1þ U

4πvF
− ð−1Þi

12πvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð2U − 5JHÞ2 þU2

p �
−1
2

;

Ks;i ¼
�
1 − U

4πvF
− ð−1Þi

12πvF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8J2H þ U2

p �
−1
2

for the channels i ¼ 1, 2, respectively, and Kc;3 ¼ Ks;3 ¼ 1

for the third channel i ¼ 3. Here, we have adopted the
conventional relations Jp ¼ JH andU0 ¼ U − 2JH, reflect-
ing the rotational symmetry of the original AOs [25].
Now since U > 0 and JH > 0, one can find that:

(i) Kc;1 < 1 in the entire region and Ks;1 < 1 only when
U < JH; (ii) Kc;2 < 1 in the region 0.2U < JH < 0.6U and
Ks;2 > 1 in the entire region. Specifically, in the physically
relevant regime, U > JH, the spin excitations are always
gapless, so Ks;i could be fixed to the unit due to the
spin-SU(2) symmetry. Because Kc;1 < 1, the channel 1 is
in the spin-density-wave (SDW) phase [16,17]. The chan-
nel 3 involves the antibonding of the MO bands ν ¼ 2, 3 as
shown in Eq. (7). In this channel both spin and charge
excitations are critical. Because of the absence of a spin
gap, the dominating superconducting instability is the
interband spin triplet pairing [16,17], driven by the inter-
band scattering between the two Q1D α and β bands.
The intriguing case is the channel 2, whose property
depends on the ratio JH=U. We plot in Fig. 3 the phase
diagram determined by the Luttinger parameters in this
channel. We find that Kc;2 > 1 in the regimes separated
by the orange-dotted and blue-dashed lines, respectively.
In these two separated regimes, the dominating instability
is still the spin-triplet pairing [16,17]. But in the inter-
mediate regime where Kc;2 < 1, the SDW instability
dominates. It should be noticed that in either case where
the interband triplet superconducting instabilities dominate,
the spin-singlet superconducting instability is the subdo-
minating instability [17,26].

In order to see whether the above Luttinger liquid
results are robust against deviations from the atomic orbital
rotational symmetry, we have also considered a small
deviation ΔU away from the rotational symmetry by
assuming U0 ¼ U þ ΔU − 2JH. As shown in the SM,
the channel 3 is still in the critical phase and the role of
ΔU is to modify the value of U in a simple manner so that
the results remain unchanged [15].
Summary and discussions.—We have focused on the

microscopic formation of the MO bands in a twisted
Hubbard tube capturing the Q1D nature of K2Cr3As3, a new
Q1D multiorbital superconducting molecular crystal with
the moderate Coulomb interaction and Hund’s coupling.
A three-channel Tomonaga-Luttinger liquid Hamiltonian
describing the low energy physics of the three active MO
bands (the α, β, and γ bands) is then derived, showing
possible unconventional triplet superconducting instabilities
within a reasonable range of interaction parameters.
The conclusions and implications of our study are

compared with the previous studies [10,11] where a
phenomenological 3D Hubbard model for the three active
MO bands was proposed based on the elegant symmetry
argument [10] and investigated by the random phase
approximation [10,11] and the mean field treatment [11].
First, the twisted structure of the Q1D ½CrAs�∞ tube
showing the extended glide reflection symmetry in accor-
dance with the C3 group is explored in our approach so that
the symmetry property of all the thirty MO bands (includ-
ing the three active MO bands) could be identified. Second,
the interactions among the three active MO bands are
derived from the microscopic atomic Hubbard interactions,
different from those proposed phenomenologically. Third,
the three diagonal channels in our Tomonaga-Luttinger
Hamiltonian are superpositions of the original DFT bands,
in contrast to the random phase approximation approach
and the mean field treatment.
We found two kinds of spin-triplet pairing instabilities

emerging out from two of the three channels. One involves
the Q1D α and β bands, another involves all three bands. In
the Luttinger liquid approach, triplet pairing instabilities are
due to gapless spin excitations for U > JH and Kc > 1 in
the corresponding channels. The ferromagnetic correlation
within the sublattice of Cr atoms [4,11], though possible,
is not a prerequisite of the triplet states. We also found an
intermediate regime 0.2 < JH=U < 0.6 where the SDW
phase emerges. Our solution is sensitive to the symmetry or
regularity of the two conjugated Cr triangles, seemingly
consistent with the recent hydrostatic and uniaxial pressure
experimental study [27]. The exact mapping from the AOs
to MO bands will also pave the way for further inves-
tigations on related effects such as the spin-orbit coupling
within a microscopic framework.
As the present study is limited to the Q1D case, the spatial

symmetry of the superconducting pairing states is not
specified. However, the actual 3D superconductivity can

FIG. 3 (color online). Luttinger parameters for the channel 2:
Ks;2 > 1 everywhere, and Kc;2 < 1 only in the intermediate
regime between the lines JH ¼ 0.2U and JH ¼ 0.6U.
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be perceived based on the Q1D physics because the iden-
tification of the three low energy MO bands is robust
owing to the same symmetry argument. The local inter-
actions among the MO bands are similar to those in the
Q1D case. If the local atomic interactions are estimated as
those in other Cr-based oxides, like SrCrO3 [28], one has
U ∼ 2.7� 0.5 eV, JH ∼ 0.42� 0.1 eV, and JH=U ∼ 0.16,
then in the Q1D case the channel 2 is in the triplet phase but
close to the SDW low boundary JH=U ¼ 0.2 shown in
Fig. 3. The corresponding residual MO interactions ~U and ~J
in the 3D case are significantly suppressed, but the ratio ~J= ~U
enhanced [15], corresponding to the regimewith small ~U but
relatively large ~J= ~U in Ref. [10], where the triplet fyð3x2−y2Þ
pairing state is favored. Of course, we have not considered
the long-rangeCoulomb interaction and the electron-phonon
coupling, the suppression of residualMO interactions should
necessitate further investigations on these influences.
Finally, a more intriguing issue is the possible dimen-

sional crossover from Q1D to 3D which could be tuned by
either chemical substitution [2,3] or physical pressure
[27,29]. On one hand, one of the three active bands,
corresponding to ν ¼ 1, evolves with the intertube hopping
and crossovers to the 3D γ band which could lead to the line
nodal feature. Meanwhile, the (α, β) bands could remain
Q1D because the intertube hopping among the AOs with
m ¼ �2 is reasonably small. On the other hand, the Q1D
superconducting instability can lead to a true long-range
order when the intertube hopping is taken into account.
Recall that the interband triplet pairing instability in the
channel 2 is driven not only by the γ band, but also by the
(α, β) bands. Consequently, the spin-triplet pairing insta-
bility in the channel 2 involves both the 3D and Q1D bands.
As such a 3D pairing state could emerge from a normal
state of an essentially Q1D Luttinger liquid characteristic, a
scenario which is likely consistent with available experi-
ments. It is desirable to investigate the related crossover
behavior in this class of materials in the future.
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