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β and α relaxation processes are dynamical scaling regimes of glassy systems occurring on two separate
time scales which both diverge as the glass state is approached. We study here the crossover scaling from β
to α relaxation in the cooperative facilitation scenario (CFS) and show that it is quantitatively described,
with no adjustable parameter, by the leading order asymptotic formulas for scaling predicted by the mode-
coupling theory (MCT). These results establish (i) the mutual universality of the MCTand CFS, and (ii) the
existence of a purely dynamic realization of MCT, which is distinct from the well-established random first
order transition scenario for disordered systems. Some implications of the emerging kinetic-static duality
are discussed.
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The glass state is obtained with striking simplicity in a
variety of substances [1]. Yet, its fundamental nature is one of
themost enduring puzzles of condensedmatter physics. From
a dynamical point of view, what makes the glass relaxation so
peculiar is the existence of two time scales which both grow
dramatically as the separation σ from the glass state vanishes.
The first scale, tσ , refers to the rattling motion of particles in
the cage formed by their neighbors (β relaxation). The second
one, tσ 0 ≫ tσ, is generally ascribed to the slower cooperative
rearrangements of cages that allow long-term particle dif-
fusion (α relaxation). This two-step relaxation pattern was
first predicted by mode-coupling theory (MCT) [2], and
entails as precursors phenomena strongly temperature or
density dependent spectra exhibiting relaxation stretching.
Pioneerwork first identified theseglass precursors in colloidal
suspensions of hard spheres [3] and in molecular-dynamics
simulations for a Lennard-Jones mixture [4].
The crossover from β to α relaxation, which occurs for

times large on scale tσ but small on scale t0σ, constitutes a
crucial test for our understanding of glassy dynamics [5]. It
is remarkable because the ratio t0σ=tσ is itself diverging as
σ → 0. At the same time, however, its actual investigation is
delicate because of the sensitive dependence on three
quantities: the separation parameter σ, the system-specific
exponent parameter λ, and the arrested part of the corre-
lation f. In realistic systems these quantities can be inferred
only with limited accuracy (or may even be not well
defined). This makes it difficult to assess unambiguously
the MCT predictions and only a few cases have been
analyzed [6,7]. In this Letter we provide a test of the
crossover scaling in the cooperative facilitation scenario
(CFS) [8]. Several results have already suggested a close
analogy between MCTand CFS [9–12]. Here we show that
this relation is, in fact, quantitative and deep.
MCT scaling laws.—Without loss of generality we refer

to the ideal version of MCT, in which the normalized

density-fluctuation correlator ΦðtÞ has no wave-vector
dependence (for an exhaustive description of MCT, see
Ref. [2]). Near the glass bifurcation singularity the
correlator exhibits a plateau at some fc. Near this plateau
the small-σ dynamics on scale tσ is ruled by the first
scaling law:

ΦðtÞ − fc ¼ cσgðt̂Þ; t̂ ¼ t
tσ
: ð1Þ

Here the correlation scale cσ and the time scale tσ read

cσ ∝
ffiffiffiffiffiffi
jσj

p
; tσ ∝ jσj− 1

2a; ð2Þ

where a is some critical exponent. The σ-independent
master function gðt̂Þ obeys the scale-invariant equation

−1þ λgðt̂Þ2 − ∂ t̂

Z
t̂

0

gðt̂ − t̂0Þgðt̂0Þdt̂0 ¼ 0; ð3Þ

to be solved for the initial condition limt̂→0gðt̂Þt̂a ¼ 1. The
exponent parameter, λ, quantifies all properties of gðt̂Þ. In
particular, it determines the exponent a via

Γð1 − aÞ2
Γð1 − 2aÞ ¼ λ: ð4Þ

Two time regions can be distinguished in the first scaling
regime where, depending on whether Φ is above or below
fc, the master function gðt̂Þ can be approximated as

gðt̂Þ≃
� gaðt̂Þ ¼ t̂−a − A1t̂a; for Φ > fc

gbðt̂Þ ¼ −Bt̂b þ B1

B t̂−b; for Φ < fc
; ð5Þ

with an error decreasing faster than t̂a in the former case
and t̂−b in the latter. The coefficients A1 and B1 read
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1

2A1

¼ Γð1 − aÞΓð1þ aÞ − λ; ð6Þ

1

2B1

¼ Γð1 − bÞΓð1þ bÞ − λ; ð7Þ

while B is a positive quantity fixed only by λ. The dominant
contribution to gbðt̂Þ, −Bt̂b, is called von Schweidler decay.
The von Schweidler exponent b is determined by

Γð1þ bÞ2
Γð1þ 2bÞ ¼ λ; ð8Þ

with 0 < b ≤ 1. The function gðt̂Þ exhibits a zero at some
t̂�. The part for t̂ preceding t̂� deals with deviation from the
critical decay. The part for t̂ > t̂� describes the approach
toward the von Schweidler decay. The quantities t̂� and B
have to be calculated by solving Eq. (3). The numerical
solution [5] shows that there is an interval for t̂ centered by
t̂�, where the three functions ga, gb, and g are very close
to each other. Therefore, to locate approximately t̂� and B
we set gaðt̂�Þ ¼ gbðt̂�Þ ¼ 0, which gives t̂� ≃ A−1=2a

1 and

B≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ab=a
1 B1

q
. These approximations permit us to base the

comparison with the CFS on elementary formulas.
Substituting the von Schweidler decay into Eq. (1), one

gets the von Schweidler decay law

ΦðtÞ − fc ¼ −
�

t
tσ 0

�
b
; ð9Þ

where the new relevant time scale is now

tσ 0 ∝ jσj−γ; γ ¼ 1

2a
þ 1

2b
: ð10Þ

von Schweidler’s law describes the small-σ dynamics for
times intermediate between two diverging time scales,
tσ ≪ t ≪ tσ 0. It is important because of the connection it
establishes between the late part of β relaxation to the early
part of the α relaxation. The latter deals with the plateau-
below dynamics on scale tσ 0 and is globally governed by
the second scaling law (also known as the time-temperature
superposition principle):

ΦðtÞ ¼ ~Φ

�
t
tσ 0

�
: ð11Þ

Here, ~Φ is another σ-independent master function. As an
example, Figs. 1, 2, and 3 show the typical two-step
relaxation and the associated MCT scaling laws for the
CFS that we now describe.
CFS.—In the dynamic facilitation approach, the meso-

scopic structure of a liquid at temperature T is represented
by an assembly of binary spins, si ¼ �1, i ¼ 1;…; N,

whose value depends on whether the local liquid density at
site i is higher or lower than the average. Energetic
interactions are absent but the spin dynamics is facilitated
(or constrained) [8]: At each time step a randomly chosen
spin si is flipped with probability wðsi → −siÞ ¼
min f1; e−si=Tg, provided that the spin si is surrounded
by at least f nearby (liquidlike) up spins. This constraint
mimics the cage effect: when the temperature is low enough
the fraction of liquidlike spins is vanishingly small and,
consequently, spin relaxation may involve a large number
of cooperative spin flips over regions with increasing size.
Here, the relevant range of the facilitation parameter, f, is
1 < f < z − 1, where z is the lattice coordination. The
correlator of our interest shall be the persistence ΦðtÞ, i.e.,
the probability that a spin has never flipped between times
0 and t. Its long-time limit, the probability that a spin is
permanently frozen, is precisely the analog of the non-
ergodicity parameter f. On the Bethe lattice this co-
operative dynamics exhibits features qualitatively similar
to MCT [9–13], though one would, naively, expect that the
conventional form of MCT fails for this type of model as

FIG. 1 (color online). Correlation decay for temperature
T ∈ ½0.49; 10� in the CFS on a Bethe lattice with coordination
z ¼ 4 and facilitation parameter f ¼ 2. System size N ¼ 223–24.

FIG. 2 (color online). MCT first scaling law in the CFS.
Rescaled correlator vs rescaled time variable t̂=t̂� ¼ t=t�.
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static correlations vanish. In fact, previous works on related
facilitated systems on finite dimensional lattices showed
that MCT-like approximations are unable to describe the
overall glassy dynamics [14–16]. This can be generally
understood through the connection of CFS with the boot-
strap percolation transition which is smeared out in finite
dimensions. For this reason, our evaluation of the MCT
status is carried out on the Bethe lattice, which is the first
natural step of a statistical mechanics treatment. This is also
relevant because (i) MCT scaling regimes are sometimes
hardly observed in numerical simulations of disordered
systems [17,18], and (ii) MCT shows a behavior which, in
the limit of large space dimensionality, does not conform to
the replica theory [19–21].
To compare CFS with MCT we have first checked the

β- and α-scaling laws along with Eqs. (2) and (10). We
proceed as follows. The time scale tσ is estimated as

tσ ¼
Z

t�

0

½ΦðtÞ − Φðt�Þ�dt; ð12Þ

where t� is the time to cross the plateau,Φðt�Þ ¼ fc. This is
easily done as fc is known exactly. For the Bethe lattice we
consider here, z ¼ 4 and f ¼ 2, we have Tc ¼ 0.480 89…
and fc ¼ 0.673 09…. [9]. Figure 4 shows that tσ obeys the
power law tσ ∝ σ−

1
2a with an exponent a≃ 0.27. This value

is obtained by a fit over the temperature range [0.52,0.82].
Notice that a is the only critical exponent we estimate
numerically here. The correlation scale cσ , instead, is
obtained from the MCT relation [2]:

cσ ¼
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p
ðf − fcÞ: ð13Þ

Here the jump of the order parameter, f − fc, is deduced
from the exact calculation on the Bethe lattice [9], while λ is
estimated by exploiting Eq. (4) which gives λ≃ 0.815. The
result for the correlation scale cσ is shown in Fig. 4 along
with the MCT prediction. The excellent collapse of the
rescaled relaxation data showed in Fig. 2 is obtained by

using the cσ calculated in this way. We then get b≃ 0.45
and γ ≃ 2.96 from Eqs. (8) and (10). This latter value is
consistent with that found in Ref. [9] (γ ≃ 2.9). As a
consistency check we then estimate the time scale tσ 0
through Eq. (12) with t� such that Φðt�Þ ¼ 0. Figure 4
shows that tσ 0 and the ratio tσ 0=tσ are correctly predicted by
MCT. From tσ 0 we finally get the second scaling law for the
α-relaxation process that we find to hold in a wide range of
temperatures above Tc; see Fig. 3.
We now consider in detail the MCT predictions for the

asymptotic leading order corrections to the critical decay
laws, Eq. (5). The coefficients entering Eq. (5) as obtained
from the critical exponents estimated above are A1 ≃ 1.58,
B1 ≃ 0.812, and B≃ 1.32. We shall use these values to test
in a self-consistent manner the MCT predictions: any
observed deviation would mean that MCT does not hold
for CFS either because the λ estimated for our system is not
connected to the critical decay exponents a and b by
Eqs. (4) and (8), or because Eqs. (5), (6), and (7) just do not
apply to CFS. We have explored a relatively wide range of
temperatures above Tc. Figure 5 shows the behavior ofΦðtÞ
for some values of T along with the MCT predictions for
the crossover through the plateau. The full line above fc
represents the function fc þ cσgaðt̂=t̂�Þ while the plateau-
below function corresponds to fc þ cσgbðt̂=t̂�Þ. To appre-
ciate the effect of leading order corrections we also add the
critical decay laws (which are obtained by setting
A1 ¼ B1 ¼ 0) as dashed lines. We see that, in agreement
with the nature of MCT corrections, the quality of
comparison increases as T decreases. In particular, up to
the 80% of the correlator shape is accurately reproduced,
over a time window ranging from two to more than three
decades; see Fig. 5. No significant improvement is achieved
with the exact numerical solution of Eq. (3) [22]. It is
interesting to observe that, even though MCT was not
obviously devised for describing CFS, the MCT predictions
perform even better than a recent truncation scheme for

FIG. 3 (color online). MCT second scaling law in the CFS.
FIG. 4 (color online). Time scales tσ and t0σ and their ratio vs
σ ¼ T=Tc − 1 in the CFS. Data for the correlation scale cσ are
calculated exactly by using Eq. (13) with λ≃ 0.815. Straight
lines are MCT predictions.
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facilitated master equations; see Fig. 4 in Ref. [23] for a
comparison. Thus, it seems that MCT fully captures in a
very general way the slow dynamics of large scale
cooperative rearrangements occuring near the glass
singularity.
What makes the observed agreement pretty remarkable,

however, is the absence of any fitting parameter in our
procedure. In fact, one should keep in mind that the
prefactors of leading order corrections, A1 and B1=B, are
correlated and have no temperature dependence; i.e., they
are strongly constrained. Thus, to check the stability of our
comparison, we changed the exponent a by an amount of
�0.01, that is essentially the uncertainty we have on this
exponent. We then found that relaxation behavior is still
well reproduced if all other quantities entering Eq. (5) are
changed according to MCT relations. This robustness
seems to suggest that prefactors of leading order correc-
tions are rather optimal from the purely data fitting point of
view. Nevertheless, we notice that very close to Tc (below
T ¼ 0.51), the theoretical value of cσ need to be increased
by a small factor (up to 5%) in order to accurately describe
the intermediate stage of α relaxation. This discrepancy is
presumably due to critical finite-size corrections which are
hardly accounted for in a MCT description. The exact
solution of a related cooperative facilitated system should
help to settle this issue [24]. Since static correlations are
absent here, we expect that a suitable MCT formulation of
facilitation dynamics is related to those studied in
Refs. [25,26].
Conclusions.—We have shown that the relaxation behav-

ior of cooperative facilitated spin models is accurately
described, in a relatively wide range of temperatures, by the
MCT predictions for the asymptotic leading corrections to
critical decay laws. These results support the idea of glassy
universality and put on a solid quantitative ground the
correspondence between MCT and CFS. At the same time
new challenges arise.

It is well known that the dynamics of disordered p-spin-
like systems is also exactly described by MCT, which is the
key to the celebrated random-first order transition (RFOT)
scenario for the glass transition [27,28]. RFOT is based on a
nontrivial phase structure characterized by a one-step
replica symmetry breaking and a possible fractal free-
energy landscape lying deeper in the glass phase [29]. In
the CFS, instead, thermodynamics plays no role: the
configuration space breaks into several components that
cannot be connected by a sequence of allowed spin flips.
The duality between kinetic and static representations
seems therefore irreconcilable. This would imply, for
example, that the dynamical inverse problem of inferring
the interactions among system units starting solely from
time correlation data is undecidable. However, in view of
the double connection (between MCT and CFS on one
hand, and between MCTand RFOTon the other) one is led
to conclude that a map connecting CFS and RFOT must
necessarily exist [30]. Extending the mapping below the
Kauzmann temperature would obviously require extra
thermodynamic ingredients which are arguably provided
by suitable energetic interactions, as shown in Ref. [31].
Thus, the existence of three a priori distinct frameworks
that give the same dynamical scaling laws, while certainly
surprising, should not be considered as a mere coincidence,
but rather as a genuine signature of the universality of
glassy relaxation captured by these frameworks. One
advantage of the CFS is that the glass formation can be
interpreted in real space as the formation of a bootstrap
percolation backbone of permanently frozen spins. Much
less clear is how to extract the values of the critical
exponents a and b from this geometrical structure, since
no spin is permanently frozen on the liquid side of the glass
transition. So, at the moment this important issue remains
elusive in this framework as well as in other ones. Another
perspective suggested by the CFS is that the ergodicity-
restoring activated events in finite dimensions should be
interpreted as the analog of the finite-volume metastability

FIG. 5 (color online). Persistence ΦðtÞ vs time t at temperature T in the CFS. Full lines are the asymptotic leading corrections to the
critical scaling laws predicted by MCT. The line above the plateau at fc ¼ 0.673 09 represents the function fc þ cσgaðt̂=t̂�Þ while the
blue line below the plateau corresponds to fc þ cσgbðt̂=t̂�Þ. For comparison, pure critical decay laws are shown as dashed lines.
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effects, which are known to transform the bootstrap
percolation transition in a (sharp) crossover [32]. Finally,
it would be crucial to extend the above investigation to
finite dimensional facilitated systems having a glass tran-
sition (see, e.g., Ref. [33]). The exploration of these
problems is left to future works.
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