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We introduce a method for calculating the probability with which a low-energy electron hitting the wall
of a bounded plasma gets stuck in it and apply the method to a dielectric wall with positive electron affinity
smaller than the band gap using MgO as an example. In accordance with electron beam scattering data we
obtain energy-dependent sticking probabilities significantly less than unity and question thereby for
electrons the perfect absorber assumption used in plasma modeling.
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The interaction of electrons with surfaces plays a key
role in applied science. Various methods of surface analysis
[1–3] are based on it as well as a number of materials
processing techniques [4]. In these applications the electron
energy is above 100 eV and backscattering and secondary
electron emission, the physical processes involved, are
sufficiently well understood [5–12]. The situation is differ-
ent for electron-surface interaction at energies below
100 eV, as it occurs in dielectric barrier discharges
[13–15], dusty plasmas [16–20], Hall thrusters [21,22],
and electric probe measurements [23]. Much less is
quantitatively known about it, especially at very low
energies, below 10 eV. For instance, the probability with
which a low-energy electron gets stuck in the wall after
hitting it from the plasma is unknown. In the modeling of
bounded plasmas [24–28] it is assumed to be close to unity,
implying for electrons the wall is a perfect absorber [29],
irrespective of the material. Since electron absorption and
extraction (by charge-transferring heavy particle collisions)
control the wall potential, and hence the plasma sheath,
which in turn affects the bulk plasma, the electron sticking
probability is a crucial parameter. That its magnitude
matters and should be known precisely has been recognized
most clearly by Mendis [20] in connection with grain
charging in dusty plasmas, but the theoretical work [30,31]
he refers to is based on classical mechanics not applicable
to electrons.
In this work we apply quantum mechanics to calculate

the probability with which a low-energy electron is
absorbed by a surface. We couch the presentation in a
particular application: The calculation of the electron
sticking probability at room temperature for a dielectric
wall [32] with positive electron affinity χ smaller than the
band gap Eg. But the approach is general and can be also
applied to other cases. It utilizes two facts noticed by
Cazaux [1]: (i) low-energy electrons do not see the strongly
varying short-range potentials of the surface’s ion cores, but
a slowly varying surface potential and (ii) they penetrate
deeply compared to the lattice constant into the surface.
The scattering pushing the electron back to the plasma

occurs thus in the bulk of the wall, suggesting the
probability for the electron to get absorbed by it to be
the probability for transmission through the wall’s surface
potential times the probability to stay inside the wall despite
internal backscattering.
The variation of the potential across a floating dielectric

wall can be calculated self-consistently [33]. For χ > 0 it
gives rise to an energy barrier for electrons whose height on
the plasma side is the Coulomb energy Uw an electron has
to overcome to reach the wall. On the solid side the height
is χ since for χ > 0 electrons entering the wall and making
up its charge are surplus electrons occupying the wall’s
conduction band [33]. For the sticking probability it is the
kinetic energy of the approaching electron in the vicinity of
the wall which matters. It suffices therefore to model the
wall by a three-dimensional potential step with height χ and
electron mass mismatch m̄e ¼ m�

e=me < 1, wherem�
e is the

effective electron mass in the conduction band of the wall
andme is the electron mass, as illustrated in Fig. 1(a). More
refined treatments are possible. The shape of the step,
however, is largely irrelevant for the energies we consider.
For Al2O3, for instance, the attenuation length for an
electron with a few eV is around 200 Å [34] and thus
much larger than the lattice spacing setting the scale on
which the step varies.
Assuming, as in Fig. 1(a), the wall (plasma) to occupy

the z < 0 (z > 0) half space, measuring energy in Rydbergs
from the bottom of the conduction band, that is, setting
Ecb ¼ Uw − χ ≡ 0, length in Bohr radii, and mass in
electron masses, the transmission probability for a plasma
electron hitting the wall, and having thus kinetic energy
E − χ > 0, is given by [35]

T ðE; ξÞ ¼ 4m̄ekp
ðm̄ekþ pÞ2 ; ð1Þ

with k ¼ ffiffiffiffiffiffiffiffiffiffiffi
E − χ

p
ξ and p ¼ ffiffiffiffiffiffiffiffiffi

m̄eE
p

η the z components of
the electron momenta outside and inside the wall. In Eq. (1)
the signs of k and p are always the same. We can thus
define the direction cosines ξ and η referenced,
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respectively, to the electron momenta outside and inside the
wall, by their absolute values: ξ ¼ j cos βj and η ¼ j cos θj
[see Fig. 1(b) for the definition of β, θ, and E]. This choice
is dictated by the modeling of internal backscattering
presented later. Since the potential varies only perpendicu-
larly to the interface, the lateral momentum ~K is conserved.
Together with energy conservation, E ¼ χ þ k2 þ ~K2 ¼
ðp2 þ ~K2Þ=m̄e, this yields

1 − η2 ¼ E − χ

m̄eE
ð1 − ξ2Þ; ð2Þ

connecting η and ξ. From Eq. (2) it follows that an electron
from the plasma approaching the wall with kinetic
energy E − χ ¼ ~K2 þ k2 > 0 enters it only when

ξ > ξc ¼
(
0 for χ < E < E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄eE

E−χ

q
for E > E0;

ð3Þ

with E0 ¼ χ=ð1 − m̄eÞ. For ξ < ξc the electron is in an
evanescent wave with p2 < 0 once it is inside the wall, and

is thus totally reflected [36]. This fact, unnoticed so far in
connection with dielectric walls, has strong implications for
the sticking probability. In addition, Eq. (2) may force an
electron entering the wall from the plasma to instanta-
neously acquire inside the wall a perpendicular kinetic
energy p2=m̄e < χ. For m̄e < 1, applicable to MgO, the
material we use for illustration because of the availability of
data from electron beam scattering experiments [37], this
happens when ξ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m̄e

p
. If such an electron cannot

gain energy by inelastic scattering, as is the case for
dielectric walls at room temperature, it will have no chance
to come back to the plasma since it will not be able to
overcome the potential step χ.
The transmission probability captures only the ballistic

aspects of electron absorption by the wall. Once the
electron is inside the wall it is subject to elastic and
inelastic internal scattering, which may push the electron
back to the interface and, after successfully traversing the
surface potential in the reverse direction, back to the plasma
[see Fig. 1(a) for an illustration]. To take this possibility
into account we define the sticking probability SðE; ξÞ as
the probability of an electron hitting the wall from the
plasma with energy E and direction cosine ξ not to return to
it after entering the wall and suffering backscattering inside
it. Hence,

SðE; ξÞ ¼ T ðE; ξÞ½1 − EðE; ξÞ�; ð4Þ

with the conditional probability

EðE;ξÞ ¼
R
1
ηmin

dη0
R
E
E0
min
dE0ρðE0ÞQðEηðξÞjE0η0ÞT ðE0;ξðη0ÞÞR

1
0 dη

0 R E
0 dE0ρðE0ÞQðEηðξÞjE0η0Þ

ð5Þ

for the electron to escape from the wall after at least one
backscattering event. The lower integration limits in the
numerator, ηmin ¼

ffiffiffiffiffiffiffiffi
χ=E

p
and E0

min ¼ χ=η02, ensure that
only events are counted for which the perpendicular post-
collision energy p02=m̄e > χ, ρðEÞ ¼

ffiffiffiffiffiffiffiffiffi
m̄3

eE
p

=2ð2πÞ3 is the
conduction band density of states, and QðEηjE0η0Þ is
proportional to the probability for an electron, penetrating
the wall in a state with energy E and direction cosine η, to
backscatter after an arbitrary number of internal scattering
events towards the interface in a state with energy E0 and
direction cosine η0 [see Fig. 1(b)]. Since QðEηjE0η0Þ
describes backscattering, 0 < θ ≤ π=2 and π=2 < θ0 ≤ π,
implying 0 ≤ η, η0 < 1 as η0 ¼ j cos θ0j. The energy inte-
grals in Eq. (5) anticipate that for a dielectric wall at room
temperature the electron cannot gain energy and ηðξÞ and
its inverse ξðηÞ are defined by Eq. (2).
To calculate QðEηjE0η0Þ we use the invariant embedding

approach, originally applied to the electron backscattering
problem by Dashen [12] and revitalized recently by
Vicanek [8] and Glazov and co-workers [5,38]. It is
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FIG. 1 (color online). (a) Potential energy step of height χ
modeling the wall and a scattering trajectory bringing an electron
entering the wall back to the plasma. Half circles are the moduli
of the electron momenta outside and inside the wall at the
entrance (E) and exit (E0) point connected by phonon emission
events. Also shown is the Coulomb barrier Uw the electron has to
overcome to reach the wall, the energy distribution fðEÞ it may
have, and a realistic surface potential (red dashed curve). The tilt
of the potential step due to the wall charge responsible for Uw is
not shown. (b) Illustration of Eqs. (4)–(5) defining SðE; ξÞ. The
potential step leads to a transmission probability T , while the
emission of phonons to a conditional backscattering probability E
proportional to a quantity Q, obtained from the invariant
embedding approach, that is, by adding an infinitesimally thin
layer to the wall and requiring Q to be invariant against it [12].
Notice the definition of the angles and energies characterizing the
electron. Inside (outside) the wall the angles, measured with
respect to the surface normal n̂, are denoted θ (β) and θ0 (β0).
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illustrated in Fig. 1(b). Summing up the four paths (1)–(4),
requiring Q to be invariant against the change it induces,
and taking into account that Q does not depend on the
azimuths of the electron’s initial and final propagation
direction measured with respect to the surface normal n̂
yields a nonlinear integral equation forQðEηjE0η0Þ [12,38].
Since at low energy most scattering processes in a solid are
forwardly peaked [39], we linearize the equation by an
expansion of QðEηjE0η0Þ in the number of the rare back-
scattering events. For dielectric surfaces at room temper-
ature and 0 < χ < Eg, scattering at low energy arises
mainly from the emission of optical phonons with energy
ω. Since the electron cannot gain energy by scattering it can
lose at most the energy it initially had when entering the
wall. Expanding QðEηjE0η0Þ also in the number of forward
scattering events yields thus a double series which termi-
nates after a finite number of terms. From the golden rule
transition rate per time [40] and the material parameters of
MgO [41,42] follows that backward scattering due to
emission of an optical phonon is 2 orders of magnitude
less likely than forward scattering. Writing

QðEηjE0η0Þ ¼
X∞
n¼1

X∞
m¼0

Qn
mðE; ηjη0ÞδðE − E0 − ωn

mÞ; ð6Þ

with ωn
m ¼ ðnþmÞω, we can thus truncate the summation

already after a single backward scattering event, that is,
after n ¼ 1 leaving Mtot ¼ ⌊E=ω⌋ − 1 forward scattering
events at most. Introducing kernels

K�ðEηjE0η0Þ ¼ 1

2ρðEÞ ½ðEþ E0∓2
ffiffiffiffiffiffiffiffi
EE0p

ηη0Þ2

− 4EE0ð1 − η2Þð1 − η02Þ�−1=2 ð7Þ

for forward (þ) and backward (−) scattering and a function
ΠðEÞ ¼ arcoshð ffiffiffiffiffiffiffiffiffi

E=ω
p Þ=E, all three arise in the course of

the calculation from the transition rate per length, the input
driving the integral equation for Q [38] most directly
obtained by dividing the transition rate per time by the
electron velocity prior the emission event, the expansion
coefficients satisfy

Q1
mðE; ηjη0Þ ¼ FmðE; ηjη0ÞQ1

m−1ðE − ω; ηjη0Þ
þQ1

m−1ðE; ηjη0ÞGmðE −mω; ηjη0Þ; ð8Þ

with m ¼ 1;…;Mtot, and

FmðE; ηjη0Þ ¼
KþðEjE − ω; ηÞη0ρðE − ωÞ
η0ΠðEÞ þ ηΠðE − ðmþ 1ÞωÞ ; ð9Þ

GmðE; ηjη0Þ ¼
ηρðEÞKþðEjE − ω; η0Þ

η0ΠðEþmωÞ þ ηΠðE − ωÞ : ð10Þ

The initialization of the recursion (8) is given by

Q1
0ðE; ηjη0Þ ¼

η0K−ðEηjE − ωη0Þ
η0ΠðEÞ þ ηΠðE − ωÞ : ð11Þ

Forward scattering is encoded into the function
KþðEjE0; ηÞ ¼ R

1
0 dη̄KþðEηjE0η̄Þ ¼ R

1
0 dη̄KþðEη̄jE0ηÞ,

where the second identity utilizes the symmetry of
KþðEηjE0η0Þ with respect to interchanging η and η0. It
can be obtained analytically and enters the formalism
because KþðEηjE0η0Þ is strongly peaked for η ¼ η0, as
can be seen from Eq. (7), and noticing that KþðEηjE0η0Þ
enters always with E0 ¼ E − ω. Integrals over the direction
cosine containing KþðEηjE0η0Þ can thus be handled by a
saddle-point approximation. Physically, this means the
directional change due to forward scattering is negligible.
Only backward scattering changes the direction [see
Fig. 1(a)]. We thus end up with a model similar in spirit
to the Oswald, Kasper, and Gaukler model [43] for back-
scattering of electrons from surfaces due to multiple elastic
scattering. The strong forward scattering comes from the
matrix element for the interaction of an electron with an
optical phonon which is at low electron density inversely
proportional to the momentum transfer squared [40].
Substituting expansion (6) for QðEηjE0η0Þ in Eq. (5) sets

E0 to E1
m ¼ E − ω1

m and replaces the energy integrals by
sums over m running in the numerator up to m ¼ Mopen ¼
⌊ðEη2 − χÞ=ðη2ωÞ⌋ − 1, and in the denominator up to
m ¼ Mtot. Inserted into Eq. (4) it finally gives the electron
sticking probability SðE; ξÞ at room temperature for a
dielectric wall with 0 < χ < Eg and a clean, lateral
momentum conserving interface.
In Fig. 2 we present the results for MgO obtained from

Eq. (4). Material parameters are given in the caption. The
left panel shows the angle-resolved sticking probability
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FIG. 2 (color online). Electron sticking probability for MgO
obtained from Eq. (4). On the left is shown SðE; ξÞ for all
direction cosines ξ and energies E up to the band gap Eg. Total
reflection occurs in the white region. Below the yellow dotted line
inelastic backscattering has no effect on SðE; ξÞ. On the right,
SðE; ξÞ (solid curves) and T ðE; ξÞ (dashed curves) are plotted as a
function of E for representative ξ. The material parameters are
m̄e ¼ 0.4, χ ¼ 1 eV, Eg ¼ 7.8 eV [41], and ω ¼ 0.1 eV [42].
The value for m̄e is strictly applicable only at the band edge.
Away from it m̄e depends on momentum. From the band structure
[44] we expect our results are reliable up to 5 eV, enough for a
comparison with experiment (see Fig. 3).
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SðE; ξÞ over the whole range of direction cosines and
energies up to the band gap, above which electron-hole pair
generation across the band gap has to be taken into account
as an additional, Coulomb-driven backscattering process. It
can be treated in the same spirit, in particular the truncation
after one backscattering event will still be possible, but the
recursion will then contain energy integrals. The white area
in the plot for SðE; ξÞ indicates the region in the ðE; ξÞ
plane where total reflection occurs. It is large because m̄e is
for MgO significantly smaller than unity. Below the dotted
yellow line, ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − m̄e
p

, inelastic backscattering due to
emission of optical phonons is irrelevant for sticking
because the perpendicular energy of the electron drops,
upon entering the wall, below the potential step χ due to
conservation of total energy and lateral momentum. It is
hence already confined by transmission. Only above the
dashed yellow line does inelastic backscattering have a
chance to bring the electron, once it is inside the wall, back
to the interface and, after a successful reverse transmission
through the surface potential, back to the plasma. As a
result, SðE; ξÞ ¼ T ðE; ξÞ for ξ < ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − m̄e
p

and SðE; ξÞ <
T ðE; ξÞ for ξ > ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − m̄e
p

. This can be more clearly seen in
the right panel, where SðE; ξÞ (solid curves) and T ðE; ξÞ
(dashed curves) are plotted as a function of E for repre-
sentative ξ.
The sticking probabilities in Fig. 2 are for ξ < ξc

strongly affected by total reflection caused by the mass
mismatch and conservation of energy and lateral momen-
tum. For the latter, in-plane homogeneity of the interface is
crucial. In reality imperfections may destroy it and lateral
momentum may thus not be conserved. To take this
possibility into account we include hard-core potentials
to mimic interfacial scattering centers and adopt the
modeling of ballistic electron emission spectroscopy by
Smith and co-workers [45] to the calculation of S. For a
disordered interface we then obtain

S̄ðE; ξÞ ¼ T ðE; ξÞ
1þ C=ξ

½1 − ĒðE; ξÞ�

þ C=ξ
1þ C=ξ

Z
1

ξc

dξ0TðE; ξ0Þ½1 − ĒðE; ξ0Þ�; ð12Þ

where ĒðE; ξÞ is given by Eq. (5) with T ðE; ξÞ replaced by

T̄ ðE; ξÞ ¼ T ðE; ξÞ
1þ C=ξ

þ C=ξ
1þ C=ξ

Z
1

ξc

dξ0T ðE; ξ0Þ: ð13Þ

The parameter C is a fit parameter proportional to the
density of scattering centers. It controls the elastic scatter-
ing at the interface. In the weak scattering limit, C → 0 and
S̄ → S. We thus recover the sticking probability for the
clean interface. In the strong scattering limit, C → ∞ and
we get the sticking probability for the totally disordered
interface for which C is irrelevant.

Results for MgO obtained from Eq. (12) are shown in
Fig. 3 for ξ ¼ 1 (normal incident) and C ¼ 0, 1, 2, and ∞.
We also plot experimental data from electron beam scatter-
ing [37]. The agreement between calculated and measured
probabilities is astonishing, indicating that our approach
captures essential aspects of electron absorption by the wall
at low energies. Dashed curves show T̄ ðE; 1Þ, the sticking
probability in the absence of internal backscattering. For
C ¼ 0, S̄ðE; 1Þ deviates strongly from T̄ ðE; 1Þ (black
curves), whereas for C ¼ ∞ the two quantities approach
each other (blue curves). The reason is the angle averaging
at the disordered interface which lessens, for fixed ξ, the
impact of internal backscattering compared to the knock
out of ξ values by total reflection signaled by the kink at
E ¼ E0. How close the two curves come to each other, that
is, how ineffective internal backscattering becomes,
depends on m̄e and χ.
To summarize, we presented a quantum-mechanical

method to calculate the sticking probability S for a low-
energy electron hitting the wall of a bounded plasma. Using
the electron’s large penetration depth the method expresses
S as the probability T for transmission through the wall’s
surface potential times the probability 1 − E to stay inside it
despite internal backscattering. For MgO we got in agree-
ment with electron beam scattering data S < 1, indicating
S ≈ 1, employed in plasma modeling, may not always be
justified. Using SðE; ξÞ from our approach instead of S ≈ 1,
for instance, in the theory of grain charging in dusty
plasmas would reduce the charge of micron-sized MgO
particles by more than 10%. The method is flexible and
numerically efficient. Various scattering processes, includ-
ing interfacial scattering due to disordered interfaces, can
be treated. It could thus guide an experimental effort to
develop a realistic description of electron-wall interaction
as it occurs in many applications of bounded plasmas.
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FIG. 3 (color online). Electron sticking probability S̄ðE; 1Þ for
normal incident onto a MgO wall obtained from Eq. (12) (solid
curves). We show data for C ¼ 0 (black), 1 (red), 2 (green), and
∞ (blue) with T̄ ðE; 1Þ also included for C ¼ 0 and C ¼ ∞
(dashed curves). Symbols are data from electron beam scattering
experiments, where two methods, denoted potential adjusted
method (pam) and potential subtraction method (psm), have been
employed to determine the energy of the electron [37]. Material
parameters as in Fig. 2.
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